【集成学习】Bootstrap抽样

在机器学习中,集成学习(Ensemble Learning)是一种通过组合多个模型来提高预测性能的技术。常见的集成学习方法包括Bagging、Boosting、Stacking等。而Bootstrap抽样(Bootstrap Sampling)是集成学习中非常重要的一种技术,尤其是在Bagging(Bootstrap Aggregating)算法中得到了广泛应用。本文将从基本概念出发,详细介绍Bootstrap抽样的原理、在集成学习中的应用以及其优势。

1. 什么是Bootstrap抽样?

Bootstrap抽样是一种通过对原始数据集进行有放回的随机抽样,生成多个训练子集的技术。与传统的简单随机抽样不同,Bootstrap抽样允许同一个样本在抽样过程中被选中多次,也可能有样本完全未被选中。由于有放回抽样的特性,生成的子集会包含一定的重复数据。

Bootstrap抽样过程:

  • 从原始数据集随机抽取样本(允许重复),形成一个新的子集,大小与原始数据集相同
  • 重复此过程多次,生成多个不同的子集
  • 每个子集用于训练一个基学习器(例如决策树)
  • 所有基学习器的预测结果通过某种方式(如平均或投票)进行组合,得出最终的预测结果

事实证明,在自助法(bootstrapping)过程中,平均而言只有大约 63% 的样本被选中。而在树构建过程中未被使用的样本称为袋外样本(Out-Of-Bag, OOB)

2. Bootstrap抽样在集成学习中的应用

Bootstrap抽样在集成学习中的典型应用是Bagging算法。Bagging是Bootstrap抽样的一个具体实现,旨在通过组合多个基学习器的预测结果来提高整体模型的性能。

Bagging中的Bootstrap抽样:

  • 使用Bootstrap抽样生成多个子集,训练多个模型(通常是相同类型的基学习器)。
  • 对于分类任务,通常采用投票方式进行预测;对于回归任务,通常采用平均值。
  • 由于每个模型都是在不同的数据子集上训练的,因此它们的预测结果具有较低的相关性,能够有效地降低模型的方差。

3. 为什么平均而言只有大约 63% 的样本被选中

假设我们有 n 个观测值。那么未被选中的概率为:
P = n − 1 n P = \frac {n-1}{n} P=nn−1

如果我们进行 n 次有放回的抽样,那么某个观测值被选中的概率是:
( n − 1 n ) n (\frac{n-1}{n})^n (nn−1)n

在极限情况下(或者实际上,当 n 足够大时),结果大约为:
lim ⁡ n → ∞ ( n − 1 n ) n = e − 1 ≈ 0.368 \lim_{n \to \infty} (\frac {n-1}{n})^n = e^{-1} \approx 0.368 n→∞lim(nn−1)n=e−1≈0.368

相关推荐
Wo3Shi4七1 分钟前
数组
数据结构·算法·go
摆烂工程师6 分钟前
Claude Code 落地实践的工作简易流程
人工智能·claude·敏捷开发
CoovallyAIHub8 分钟前
YOLOv13都来了,目标检测还卷得动吗?别急,还有这些新方向!
深度学习·算法·计算机视觉
亚马逊云开发者8 分钟前
得心应手:探索 MCP 与数据库结合的应用场景
人工智能
大明哥_13 分钟前
100 个 Coze 精品案例 - 小红书爆款图文,单篇点赞 20000+,用 Coze 智能体一键生成有声儿童绘本!
人工智能
聚客AI13 分钟前
🚀拒绝试错成本!企业接入MCP协议的避坑清单
人工智能·掘金·日新计划·mcp
转转技术团队41 分钟前
边学边做:图片识别技术的学习与应用
后端·算法
rocksun1 小时前
GraphRAG vs. RAG:差异详解
人工智能
一块plus1 小时前
2025 年值得一玩的最佳 Web3 游戏
算法·设计模式·程序员
前端拿破轮1 小时前
不是吧不是吧,leetcode第一题我就做不出来?😭😭😭
后端·算法·leetcode