【集成学习】Bootstrap抽样

在机器学习中,集成学习(Ensemble Learning)是一种通过组合多个模型来提高预测性能的技术。常见的集成学习方法包括Bagging、Boosting、Stacking等。而Bootstrap抽样(Bootstrap Sampling)是集成学习中非常重要的一种技术,尤其是在Bagging(Bootstrap Aggregating)算法中得到了广泛应用。本文将从基本概念出发,详细介绍Bootstrap抽样的原理、在集成学习中的应用以及其优势。

1. 什么是Bootstrap抽样?

Bootstrap抽样是一种通过对原始数据集进行有放回的随机抽样,生成多个训练子集的技术。与传统的简单随机抽样不同,Bootstrap抽样允许同一个样本在抽样过程中被选中多次,也可能有样本完全未被选中。由于有放回抽样的特性,生成的子集会包含一定的重复数据。

Bootstrap抽样过程:

  • 从原始数据集随机抽取样本(允许重复),形成一个新的子集,大小与原始数据集相同
  • 重复此过程多次,生成多个不同的子集
  • 每个子集用于训练一个基学习器(例如决策树)
  • 所有基学习器的预测结果通过某种方式(如平均或投票)进行组合,得出最终的预测结果

事实证明,在自助法(bootstrapping)过程中,平均而言只有大约 63% 的样本被选中。而在树构建过程中未被使用的样本称为袋外样本(Out-Of-Bag, OOB)

2. Bootstrap抽样在集成学习中的应用

Bootstrap抽样在集成学习中的典型应用是Bagging算法。Bagging是Bootstrap抽样的一个具体实现,旨在通过组合多个基学习器的预测结果来提高整体模型的性能。

Bagging中的Bootstrap抽样:

  • 使用Bootstrap抽样生成多个子集,训练多个模型(通常是相同类型的基学习器)。
  • 对于分类任务,通常采用投票方式进行预测;对于回归任务,通常采用平均值。
  • 由于每个模型都是在不同的数据子集上训练的,因此它们的预测结果具有较低的相关性,能够有效地降低模型的方差。

3. 为什么平均而言只有大约 63% 的样本被选中

假设我们有 n 个观测值。那么未被选中的概率为:
P = n − 1 n P = \frac {n-1}{n} P=nn−1

如果我们进行 n 次有放回的抽样,那么某个观测值被选中的概率是:
( n − 1 n ) n (\frac{n-1}{n})^n (nn−1)n

在极限情况下(或者实际上,当 n 足够大时),结果大约为:
lim ⁡ n → ∞ ( n − 1 n ) n = e − 1 ≈ 0.368 \lim_{n \to \infty} (\frac {n-1}{n})^n = e^{-1} \approx 0.368 n→∞lim(nn−1)n=e−1≈0.368

相关推荐
C灿灿数模5 分钟前
备战国赛算法讲解——马尔科夫链,2025国赛数学建模B题详细思路模型更新
算法·数学建模
夏天ccys19 分钟前
LeetCode Day5 -- 栈、队列、堆
算法·leetcode···队列
逻极20 分钟前
Dify 从入门到精通(第 30/100 篇):Dify 的分布式部署
人工智能·ai·agent·ai编程·工作流·dify·ai助手
bright_colo24 分钟前
Python-机器学习(一)——特征工程
人工智能·python·机器学习
PythonPioneer6 小时前
如何使用AI大语言模型解决生活中的实际小事情?
人工智能·语言模型·生活
阿雄不会写代码6 小时前
图像打标工具/方法的分类和特点说明
人工智能·分类·数据挖掘
tryCbest6 小时前
Python人工智能中scikit-learn模块的使用介绍
人工智能·python·scikit-learn
Akamai中国7 小时前
SharePlay确保最佳游戏体验
人工智能·云原生·云计算
智驱力人工智能9 小时前
工厂智慧设备检测:多模态算法提升工业安全阈值
人工智能·算法·安全·边缘计算·智慧工厂·智能巡航·工厂设备检测
茴香豆的茴19 小时前
转码刷 LeetCode 笔记[2]:203. 移除链表元素(python)
笔记·leetcode·链表