pytorch张量的new_zeros方法介绍

在 PyTorch 中,Tensor.new_zeros 是一种用于创建与现有张量形状或设备匹配的新张量的方法。该方法生成一个全为零的张量,且其数据类型、设备等属性与调用它的张量一致,除非另行指定。


new_zeros 方法的语法

Tensor.new_zeros(size, *, dtype=None, device=None, requires_grad=False)

参数说明

  • size (tuple)

    指定新张量的形状。例如 (2, 3) 表示创建一个形状为 2x3 的张量。

  • dtype (torch.dtype, 可选)

    指定新张量的数据类型。如果未指定,将与原张量的数据类型一致。

  • device (torch.device, 可选)

    指定新张量所在的设备(如 CPU 或 GPU)。如果未指定,将与原张量所在的设备一致。

  • requires_grad (bool, 可选)

    指定新张量是否需要计算梯度(默认为 False)。


new_zeros 的特性

  • 新张量与原张量具有相同的设备默认数据类型(除非显式更改)。
  • 新张量的内容为全零。

使用示例

1. 创建与现有张量形状匹配的零张量

import torch

x = torch.ones(2, 3, device='cuda')  # 创建一个形状为 (2, 3) 的张量
zeros = x.new_zeros((2, 3))          # 创建一个全零张量,与 x 具有相同形状和设备
print(zeros)
# 输出(在 GPU 上):
# tensor([[0., 0., 0.],
#         [0., 0., 0.]], device='cuda:0')

2. 创建具有不同形状的零张量

x = torch.ones(4, 5)
zeros = x.new_zeros((2, 3))  # 创建一个形状为 (2, 3) 的零张量
print(zeros)
# 输出:
# tensor([[0., 0., 0.],
#         [0., 0., 0.]])

3. 指定数据类型

x = torch.ones(3, 3, dtype=torch.float32)
zeros = x.new_zeros((2, 2), dtype=torch.int32)  # 显式指定数据类型
print(zeros)
# 输出:
# tensor([[0, 0],
#         [0, 0]], dtype=torch.int32)

4. 指定设备

x = torch.ones(2, 2, device='cuda')
zeros = x.new_zeros((3, 3), device='cpu')  # 在 CPU 上创建新张量
print(zeros)
# 输出:
# tensor([[0., 0., 0.],
#         [0., 0., 0.],
#         [0., 0., 0.]])

与其他创建零张量的方法的对比

  1. torch.zeros

    zeros = torch.zeros((2, 3))

    • 独立于已有张量。
    • 需要显式指定数据类型和设备。
  • Tensor.new_zeros

    zeros = x.new_zeros((2, 3))

  • 与现有张量 x 共享设备和默认数据类型。


常见应用场景

  1. 快速创建与输入张量匹配的零张量 在深度学习中,可能需要创建与现有张量形状和设备匹配的零张量。例如,用于初始化中间结果或辅助计算。

  2. 动态操作 当输入张量的形状、设备不固定时,可以使用 new_zeros 动态生成匹配的零张量,无需手动指定设备或数据类型。


总结

Tensor.new_zeros 是一个高效、方便的方法,适合在动态模型或设备敏感的代码中使用。它避免了显式管理设备和数据类型的麻烦,有助于提高代码的简洁性和可维护性。

相关推荐
yanglee05 分钟前
L4-Prompt-Delta
人工智能·算法·语言模型·prompt
夏日的盒盒8 分钟前
AAAI2023《Controllable Image Captioning via Prompting》
人工智能·深度学习
爱研究的小牛38 分钟前
Opus Clip AI技术浅析(二):上传与预处理
人工智能·aigc
人工智能培训咨询叶梓1 小时前
多跳问答中的语言模型知识编辑增强
人工智能·深度学习·机器学习·语言模型·自然语言处理·检索增强·多跳
hellocode_1 小时前
如何评价deepseek-V3 VS OpenAI o1 自然语言处理成Sql的能力
人工智能·gpt·ai·chatgpt
FL16238631291 小时前
电力场景电力设备漏油检测数据集VOC+YOLO格式1114张36类别
人工智能·深度学习·yolo
AI完全体1 小时前
【AI日记】25.01.11 Weights & Biases | AI 笔记 notion
人工智能·笔记·机器学习·读书·notion·kaggle 比赛
潇与上海1 小时前
【pycharm发现找不到python打包工具,且无法下载】
ide·python·pycharm
代码飞走咯1 小时前
PyCharm文档管理
ide·python·pycharm
python-码博士1 小时前
深度学习知识点:LSTM
人工智能·深度学习·lstm