深度学习——pytorch基础入门

一、张量

在PyTorch中,张量是PyTorch中最基本的数据结构。张量可以看作是一个多维数组,可以在GPU上加速运算。PyTorch的张量和Numpy的数组非常类似,但是与Numpy不同的是,PyTorch的张量可以自动地在GPU上进行加速计算。

PyTorch中的张量是深度学习模型中最常用的数据结构,它可以存储模型的输入、输出以及模型的参数,并且可以通过自动求导来计算梯度,方便进行反向传播算法的实现。

1、张量的数据类型

  • torch.float32torch.float: 默认的浮点数类型,32位浮点数。
  • torch.float64torch.double: 64位浮点数。
  • torch.float16torch.half: 半精度浮点数。适用于GPU计算,可以节省内存和计算资源。
  • torch.int8: 8位整数。
  • torch.int16torch.short: 16位整数。
  • torch.int32torch.int: 32位整数。
  • torch.int64torch.long: 64位整数。
  • torch.bool: 布尔类型,只能是True或False。

2、张量的创建

在PyTorch中,可以使用多种方式来创建张量。下面是一些常用的方法:

2.1、使用torch.tensor()函数:

可以使用torch.tensor()函数从Python列表、元组、NumPy数组等数据结构中创建一个新的张量。例如:

张量的维度可以通过.shape查看,并可使用.size0方法计算张量的形状大小,使用.numel0方法计算张量中包含元素的数量,例如:

还可以使用参数dtype来指定张量的数据类型,使用参数requires_grad来指定张量是否需要计算梯度(只有浮点数才能计算梯度)。例如:

2.2、使用torch.Tensor()函数:

在PyToreh中也可使用loreh.Tensor()函数来生成张量,而且可以根据指定的形状生成张量。

2.3、使用numpy数组转化为张量

将Numpy数组转化为PyTorch张量,可以使用torch.as_tensor()兩数和torehrom_numpy()函数,例如:

2.4、随机数生成张量

在PyToreh中还可以通过相关随机数来生成张量,并且可以指定生成随机数的分布函数等。在生成随机数之前,可以使用torch.manual_seed()函数,指定生成随机数的种子,用于保证生成的随机数是可重复出现的。

  1. torch.randn():从标准正态分布中生成随机数。

  2. torch.rand():从0到1之间的均匀分布中生成随机数。

  3. torch.randint():在给定的范围内生成随机整数。

4.torch.normal():生成服从正态分布的随机数

2.5、其他

torch.zeros():全0张量

torch.ones():全1张量

torch.eye():单位张量

torch.full(():填充张量

torch.empty():空张量

3、张量操作

3.1、改变张量大小

改变张量的形状在深度学习的使用过程中经常会遇到,而且针对不同的情况对张量形状尺寸的改变有多种函数和方法可以使用,如tensor.reshape()方法可以设置张量的形状大小。

3.2、获取张量元素

该操作类似于python中数组的访问和切片

3.3、拼接和拆分张量

在PyTorch中,可以使用torch.cat()或torch.stack()函数来拼接张量,使用torch.split()torch.chunk()函数来拆分张量。

二、

相关推荐
love530love11 分钟前
【笔记】ComfUI RIFEInterpolation 节点缺失问题(cupy CUDA 安装)解决方案
人工智能·windows·笔记·python·插件·comfyui
Lucky小小吴18 分钟前
Google《Prompt Engineering》2025白皮书——最佳实践十四式
人工智能·prompt
AI科技星20 分钟前
为什么变化的电磁场才产生引力场?—— 统一场论揭示的时空动力学本质
数据结构·人工智能·经验分享·算法·计算机视觉
青瓷程序设计20 分钟前
昆虫识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
咩图23 分钟前
C#创建AI项目
开发语言·人工智能·c#
深蓝海拓26 分钟前
opencv的模板匹配(Template Matching)学习笔记
人工智能·opencv·计算机视觉
美林数据Tempodata35 分钟前
李飞飞最新论文深度解读:从语言到世界,空间智能将重写AI的未来十年
人工智能·ai·空间智能
东哥说-MES|从入门到精通38 分钟前
数字化部分内容 | 十四五年规划和2035年远景目标纲要(新华社正式版)
大数据·人工智能·数字化转型·mes·数字化工厂·2035·十四五规划
小殊小殊38 分钟前
DeepSeek为什么这么慢?
人工智能·深度学习
极客BIM工作室1 小时前
从静态到动态:Sora与文生图潜在扩散模型的技术同异与AIGC演进逻辑
人工智能·aigc