深度学习——pytorch基础入门

一、张量

在PyTorch中,张量是PyTorch中最基本的数据结构。张量可以看作是一个多维数组,可以在GPU上加速运算。PyTorch的张量和Numpy的数组非常类似,但是与Numpy不同的是,PyTorch的张量可以自动地在GPU上进行加速计算。

PyTorch中的张量是深度学习模型中最常用的数据结构,它可以存储模型的输入、输出以及模型的参数,并且可以通过自动求导来计算梯度,方便进行反向传播算法的实现。

1、张量的数据类型

  • torch.float32torch.float: 默认的浮点数类型,32位浮点数。
  • torch.float64torch.double: 64位浮点数。
  • torch.float16torch.half: 半精度浮点数。适用于GPU计算,可以节省内存和计算资源。
  • torch.int8: 8位整数。
  • torch.int16torch.short: 16位整数。
  • torch.int32torch.int: 32位整数。
  • torch.int64torch.long: 64位整数。
  • torch.bool: 布尔类型,只能是True或False。

2、张量的创建

在PyTorch中,可以使用多种方式来创建张量。下面是一些常用的方法:

2.1、使用torch.tensor()函数:

可以使用torch.tensor()函数从Python列表、元组、NumPy数组等数据结构中创建一个新的张量。例如:

张量的维度可以通过.shape查看,并可使用.size0方法计算张量的形状大小,使用.numel0方法计算张量中包含元素的数量,例如:

还可以使用参数dtype来指定张量的数据类型,使用参数requires_grad来指定张量是否需要计算梯度(只有浮点数才能计算梯度)。例如:

2.2、使用torch.Tensor()函数:

在PyToreh中也可使用loreh.Tensor()函数来生成张量,而且可以根据指定的形状生成张量。

2.3、使用numpy数组转化为张量

将Numpy数组转化为PyTorch张量,可以使用torch.as_tensor()兩数和torehrom_numpy()函数,例如:

2.4、随机数生成张量

在PyToreh中还可以通过相关随机数来生成张量,并且可以指定生成随机数的分布函数等。在生成随机数之前,可以使用torch.manual_seed()函数,指定生成随机数的种子,用于保证生成的随机数是可重复出现的。

  1. torch.randn():从标准正态分布中生成随机数。

  2. torch.rand():从0到1之间的均匀分布中生成随机数。

  3. torch.randint():在给定的范围内生成随机整数。

4.torch.normal():生成服从正态分布的随机数

2.5、其他

torch.zeros():全0张量

torch.ones():全1张量

torch.eye():单位张量

torch.full(():填充张量

torch.empty():空张量

3、张量操作

3.1、改变张量大小

改变张量的形状在深度学习的使用过程中经常会遇到,而且针对不同的情况对张量形状尺寸的改变有多种函数和方法可以使用,如tensor.reshape()方法可以设置张量的形状大小。

3.2、获取张量元素

该操作类似于python中数组的访问和切片

3.3、拼接和拆分张量

在PyTorch中,可以使用torch.cat()或torch.stack()函数来拼接张量,使用torch.split()torch.chunk()函数来拆分张量。

二、

相关推荐
梦里是谁N11 分钟前
【deepseek之我问】如何把AI技术与教育相结合,适龄教育,九年义务教育,以及大学教育,更着重英语学习。如何结合,给出观点。结合最新智能体Deepseek
人工智能·学习
小白狮ww40 分钟前
国产超强开源大语言模型 DeepSeek-R1-70B 一键部署教程
人工智能·深度学习·机器学习·语言模型·自然语言处理·开源·deepseek
风口猪炒股指标1 小时前
想象一个AI保姆机器人使用场景分析
人工智能·机器人·deepseek·深度思考
Blankspace空白1 小时前
【小白学AI系列】NLP 核心知识点(八)多头自注意力机制
人工智能·自然语言处理
Sodas(填坑中....)1 小时前
SVM对偶问题
人工智能·机器学习·支持向量机·数据挖掘
forestsea1 小时前
DeepSeek 提示词:定义、作用、分类与设计原则
人工智能·prompt·deepseek
maxruan1 小时前
自动驾驶之BEV概述
人工智能·机器学习·自动驾驶·bev
13631676419侯1 小时前
物联网+人工智能的无限可能
人工智能·物联网
SylviaW082 小时前
神经网络八股(三)
人工智能·深度学习·神经网络
zhengyawen6662 小时前
深度学习之图像回归(二)
人工智能·数据挖掘·回归