BertTokenizerFast 和 BertTokenizer 的区别

BertTokenizerFastBertTokenizer 都是用于对文本进行标记化的工具,主要用于处理和输入文本数据以供 BERT 模型使用。它们都属于 HuggingFace 的 transformers 库。

主要区别

  1. 底层实现

    • BertTokenizer: 这是一个使用纯 Python 实现的标记器,底层通常是由 tokenizers 库中的 BPETokenizerWordPieceTokenizer 实现。
    • BertTokenizerFast: 这是一个使用 Rust 实现的标记器,底层由 HuggingFace 的 tokenizers 库中的 BertWordPieceTokenizerFast 实现。Rust 实现的标记器更快,也更高效。
  2. 速度

    • BertTokenizerFast 明显比 BertTokenizer 快。这是因为 Rust 的底层实现使得分词过程更高效,尤其是对于大数据集或需要快速处理的大规模文本任务时,性能改进会更明显。
  3. 兼容性和功能

    • BertTokenizerFast 提供所有 BertTokenizer 中的功能,并且引入了一些额外的特性,如更详细的字符对齐和处理方法,这对需要字符级别对齐的任务(如 NER)特别有用。
    • BertTokenizer 在功能上稍微少一些,更多的基础功能和兼容性。

代码示例

下面是如何使用这两种标记器的示例代码:

python 复制代码
from transformers import BertTokenizer, BertTokenizerFast

# 初始化tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
fast_tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')

text = "Hello, how are you?"

# 使用BertTokenizer进行标记化
tokens = tokenizer(text)
print("BertTokenizer tokens:", tokens)
# BertTokenizer tokens: {'input_ids': [101, 7592, 1010, 2129, 2024, 2017, 1029, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1]}


# 使用BertTokenizerFast进行标记化
fast_tokens = fast_tokenizer(text)
print("BertTokenizerFast tokens:", fast_tokens)

# BertTokenizerFast tokens: {'input_ids': [101, 7592, 1010, 2129, 2024, 2017, 1029, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1]}

选择哪一个?

  • 效率优先 :如果你需要处理大量数据并且对处理速度有较高要求,BertTokenizerFast 是更好的选择。
  • 兼容性和稳定性 :如果你习惯使用并且已经在项目中集成了 BertTokenizer,可以继续使用它;不过除非特别需要,一般建议迁移到 BertTokenizerFast 以利用更高的性能和更多的功能。

总结来说,BertTokenizerFast 通常是更好的选择,因为它速度更快,功能更强大,因此更适合大多数应用场景。

相关推荐
hnmpf19 分钟前
flask_sqlalchemy relationship 子表排序
后端·python·flask
疯狂学习GIS30 分钟前
互联网大中小厂实习面经:滴滴、美团、货拉拉、蔚来、信通院等
c++·python
Nobita Chen44 分钟前
Python实现windows自动关机
开发语言·windows·python
码路刺客1 小时前
一学就废|Python基础碎片,OS模块
开发语言·python
z千鑫1 小时前
【Python】Python之Selenium基础教程+实战demo:提升你的测试+测试数据构造的效率!
开发语言·python·selenium
XianxinMao1 小时前
o3模型重大突破:引领推理语言模型新纪元,展望2025年AI发展新格局
人工智能·语言模型
HyperAI超神经1 小时前
微软与腾讯技术交锋,TRELLIS引领3D生成领域多格式支持新方向
人工智能·深度学习·机器学习·计算机视觉·3d·大模型·数据集
Nil_cxc2 小时前
机器学习周报-GNN模型学习
人工智能·学习·机器学习
QQ27437851093 小时前
django基于Python对西安市旅游景点的分析与研究
java·后端·python·django
AI明说3 小时前
CancerGPT :基于大语言模型的罕见癌症药物对协同作用少样本预测研究
人工智能·语言模型·自然语言处理·大模型·rag