BertTokenizerFast 和 BertTokenizer 的区别

BertTokenizerFastBertTokenizer 都是用于对文本进行标记化的工具,主要用于处理和输入文本数据以供 BERT 模型使用。它们都属于 HuggingFace 的 transformers 库。

主要区别

  1. 底层实现

    • BertTokenizer: 这是一个使用纯 Python 实现的标记器,底层通常是由 tokenizers 库中的 BPETokenizerWordPieceTokenizer 实现。
    • BertTokenizerFast: 这是一个使用 Rust 实现的标记器,底层由 HuggingFace 的 tokenizers 库中的 BertWordPieceTokenizerFast 实现。Rust 实现的标记器更快,也更高效。
  2. 速度

    • BertTokenizerFast 明显比 BertTokenizer 快。这是因为 Rust 的底层实现使得分词过程更高效,尤其是对于大数据集或需要快速处理的大规模文本任务时,性能改进会更明显。
  3. 兼容性和功能

    • BertTokenizerFast 提供所有 BertTokenizer 中的功能,并且引入了一些额外的特性,如更详细的字符对齐和处理方法,这对需要字符级别对齐的任务(如 NER)特别有用。
    • BertTokenizer 在功能上稍微少一些,更多的基础功能和兼容性。

代码示例

下面是如何使用这两种标记器的示例代码:

python 复制代码
from transformers import BertTokenizer, BertTokenizerFast

# 初始化tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
fast_tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')

text = "Hello, how are you?"

# 使用BertTokenizer进行标记化
tokens = tokenizer(text)
print("BertTokenizer tokens:", tokens)
# BertTokenizer tokens: {'input_ids': [101, 7592, 1010, 2129, 2024, 2017, 1029, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1]}


# 使用BertTokenizerFast进行标记化
fast_tokens = fast_tokenizer(text)
print("BertTokenizerFast tokens:", fast_tokens)

# BertTokenizerFast tokens: {'input_ids': [101, 7592, 1010, 2129, 2024, 2017, 1029, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1]}

选择哪一个?

  • 效率优先 :如果你需要处理大量数据并且对处理速度有较高要求,BertTokenizerFast 是更好的选择。
  • 兼容性和稳定性 :如果你习惯使用并且已经在项目中集成了 BertTokenizer,可以继续使用它;不过除非特别需要,一般建议迁移到 BertTokenizerFast 以利用更高的性能和更多的功能。

总结来说,BertTokenizerFast 通常是更好的选择,因为它速度更快,功能更强大,因此更适合大多数应用场景。

相关推荐
自己的九又四分之三站台16 分钟前
9:MemNet记忆层使用,实现大模型对话上下文记忆
人工智能·算法·机器学习
逻极24 分钟前
OpenClaw「Clawdbot/Moltbot」 深入解析:核心架构深度剖析
python·ai·架构·agent·ai编程·moltbot·openclaw
sayang_shao26 分钟前
C++ ONNX Runtime 与 Python Ultralytics 库实现 YOLOv8 模型检测的区别
c++·python·yolo
曹牧26 分钟前
Java:强类型转换
开发语言·python
爱学习的阿磊35 分钟前
Python入门:从零到一的第一个程序
jvm·数据库·python
naruto_lnq39 分钟前
编写一个Python脚本自动下载壁纸
jvm·数据库·python
仟濹41 分钟前
【Java加强】1 异常 | 打卡day1
java·开发语言·python
有Li1 小时前
肌肉骨骼感知(MUSA)深度学习用于解剖引导的头颈部CT可变形图像配准/文献速递-基于人工智能的医学影像技术
人工智能·深度学习·机器学习·文献·医学生
Dingdangcat861 小时前
基于RetinaNet的建筑表面缺陷检测与识别系统研究_2
python
袖清暮雨1 小时前
Python爬虫(Scrapy框架)
开发语言·爬虫·python·scrapy