BertTokenizerFast 和 BertTokenizer 的区别

BertTokenizerFastBertTokenizer 都是用于对文本进行标记化的工具,主要用于处理和输入文本数据以供 BERT 模型使用。它们都属于 HuggingFace 的 transformers 库。

主要区别

  1. 底层实现

    • BertTokenizer: 这是一个使用纯 Python 实现的标记器,底层通常是由 tokenizers 库中的 BPETokenizerWordPieceTokenizer 实现。
    • BertTokenizerFast: 这是一个使用 Rust 实现的标记器,底层由 HuggingFace 的 tokenizers 库中的 BertWordPieceTokenizerFast 实现。Rust 实现的标记器更快,也更高效。
  2. 速度

    • BertTokenizerFast 明显比 BertTokenizer 快。这是因为 Rust 的底层实现使得分词过程更高效,尤其是对于大数据集或需要快速处理的大规模文本任务时,性能改进会更明显。
  3. 兼容性和功能

    • BertTokenizerFast 提供所有 BertTokenizer 中的功能,并且引入了一些额外的特性,如更详细的字符对齐和处理方法,这对需要字符级别对齐的任务(如 NER)特别有用。
    • BertTokenizer 在功能上稍微少一些,更多的基础功能和兼容性。

代码示例

下面是如何使用这两种标记器的示例代码:

python 复制代码
from transformers import BertTokenizer, BertTokenizerFast

# 初始化tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
fast_tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')

text = "Hello, how are you?"

# 使用BertTokenizer进行标记化
tokens = tokenizer(text)
print("BertTokenizer tokens:", tokens)
# BertTokenizer tokens: {'input_ids': [101, 7592, 1010, 2129, 2024, 2017, 1029, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1]}


# 使用BertTokenizerFast进行标记化
fast_tokens = fast_tokenizer(text)
print("BertTokenizerFast tokens:", fast_tokens)

# BertTokenizerFast tokens: {'input_ids': [101, 7592, 1010, 2129, 2024, 2017, 1029, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1]}

选择哪一个?

  • 效率优先 :如果你需要处理大量数据并且对处理速度有较高要求,BertTokenizerFast 是更好的选择。
  • 兼容性和稳定性 :如果你习惯使用并且已经在项目中集成了 BertTokenizer,可以继续使用它;不过除非特别需要,一般建议迁移到 BertTokenizerFast 以利用更高的性能和更多的功能。

总结来说,BertTokenizerFast 通常是更好的选择,因为它速度更快,功能更强大,因此更适合大多数应用场景。

相关推荐
HealthScience3 分钟前
【异常错误】pycharm debug view变量的时候显示不全,中间会以...显示
ide·python·pycharm
豌豆花下猫1 小时前
Python 潮流周刊#90:uv 一周岁了,优缺点分析(摘要)
后端·python·ai
終不似少年遊*1 小时前
词向量与词嵌入
人工智能·深度学习·nlp·机器翻译·词嵌入
橘猫云计算机设计1 小时前
基于SSM的《计算机网络》题库管理系统(源码+lw+部署文档+讲解),源码可白嫖!
java·数据库·spring boot·后端·python·计算机网络·毕设
小伍_Five1 小时前
从0开始:OpenCV入门教程【图像处理基础】
图像处理·python·opencv
m0_748245342 小时前
python——Django 框架
开发语言·python·django
java1234_小锋2 小时前
一周学会Flask3 Python Web开发-客户端状态信息Cookie以及加密
前端·python·flask·flask3
IT古董2 小时前
【漫话机器学习系列】100.L2 范数(L2 Norm,欧几里得范数)
人工智能·机器学习
B站计算机毕业设计超人3 小时前
计算机毕业设计Python+DeepSeek-R1高考推荐系统 高考分数线预测 大数据毕设(源码+LW文档+PPT+讲解)
大数据·python·机器学习·网络爬虫·课程设计·数据可视化·推荐算法
夏莉莉iy3 小时前
[MDM 2024]Spatial-Temporal Large Language Model for Traffic Prediction
人工智能·笔记·深度学习·机器学习·语言模型·自然语言处理·transformer