投机解码论文阅读:Falcon

题目:Falcon: Faster and Parallel Inference of Large Language Models through Enhanced Semi-Autoregressive Drafting and Custom-Designed Decoding Tree

地址:https://arxiv.org/pdf/2412.12639

一看它的架构图,可以发现它是基于EAGLE做的改进。falcon是猎鹰的意思,也可以看出来它是从eagle改进来的。

了解EAGLE,可以参考这篇文章:投机解码EAGLE精读_eagle: speculative sampling requires rethinking fe-CSDN博客

半自回归SAR:draft 同时生成多个 token,然而SAR draft 的一个重要局限是它无法完全捕捉相同 block 内 draft tokens 之间的相互依赖关系,可能导致生成的 token 接受率较低

简单来说,相当于是在EAGLE的基础上,把它和Medusa这种半自回归预测方式融合起来。

为了提高半自回归的预测准确性,Falcon提出了一种叫做耦合顺序扫视蒸馏(CSGD)的方法。

CSGD方法是怎么做的:

  • 如下图,在训练过程中,草稿模型预测得到对下面几个token以及其特征的预测之后,会根据正确的预测(也就是LLM自回归生成的token以及特征)对草稿模型输出进行替换

  • 具体替换的比例是根据训练所处的阶段和预测结果和正确结果之间的汉明距离决定的,当前训练轮次越小、汉明距离越大,则替换的比例越高

  • 在将预测结果进行 部分替换 之后,接下来的步骤是重新输入替换后的序列 到drafter中,并计算 训练损失,从而更新模型参数

CSGD方法的理论依据:

  • SAR方法同时预测多个token(例如 k=2时,同时预测 X 和 Y)。

  • 它的目标是同时最小化 H(X)+H(Y),即同时预测两个token的不确定性。

  • 同时预测两个token X 和 Y,其总熵为:H(X)+H(Y) = H(Y∣X) + 2I(X;Y) + H(X∣Y);I(X;Y)表示的是X与Y之间的互信息

  • 传统的半自回归方式,只关注H(Y∣X),而忽略I(X;Y) 和 H(X∣Y),导致模型无法有效学习token之间的依赖关系,从而影响生成质量。

除了这些改动,本文将EAGLE在embedding之后用于降维的MLP换成了一个LSTM,相当于是能够学习到草稿模型输入的时序关系,也就是掌握了一些tokens之间的依赖关系

在实验方面,选用的模型是vicuna-7B/vicuna-13B和llama2-chat-7B和llama2-chat-13B,这是为了和eagle进行对比;对比的方法有标准投机解码、PLD、lookahead、medusa和eagle。

除了加速比的对比实验,还有对草稿序列的接受率和接收长度的对比,被对比的方法是medusa和eagle。

性能试验的评测数据集是MT-bench、HumanEval和GSM8K:

  • MT-bench,用于评估语言模型在多任务场景下的性能

  • HumanEval,用于评估代码生成模型的性能,评估指标是通过率(Pass@k),即生成的代码通过测试用例的比例

  • GSM8K,全称 Grade School Math 8K,包含 8,500 个小学水平的数学问题,目标是测试模型的数学推理能力

相关推荐
我有医保我先冲13 分钟前
企业级会议管理工具选型指南:从需求分析到方案落地
人工智能·经验分享·自然语言处理·需求分析
java1234_小锋41 分钟前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 残差连接(Residual Connection)详解以及算法实现
深度学习·语言模型·transformer
DuHz1 小时前
车对车对向交汇场景的毫米波路径损耗建模论文精读
论文阅读·算法·汽车·信息与通信·信号处理
ʜᴇɴʀʏ1 小时前
论文阅读 SAM 3: Segment Anything with Concepts
论文阅读·人工智能·目标检测·计算机视觉·目标跟踪
雪花desu3 小时前
什么是融入 CoT 写 prompt
人工智能·语言模型
依夏c3 小时前
[论文笔记•(智能体)]ChatDoctor: A Medical Chat Model Fine-Tuned ona Large Language Model Meta-AI (LLaMA) Usi
论文阅读·论文笔记
c0d1ng4 小时前
十二月第二周周报(论文阅读)
论文阅读
DuHz5 小时前
汽车FMCW雷达互扰下的快速目标检测:谱峰累积法与泊松CFAR精读与推导
论文阅读·算法·目标检测·汽车·信息与通信·信号处理
imbackneverdie5 小时前
什么是Token?——理解自然语言处理中的基本单位
数据库·人工智能·自然语言处理·aigc·token
阿杰学AI5 小时前
AI核心知识53——大语言模型之Structured CoT 超级模版(简洁且通俗易懂版)
人工智能·ai·语言模型·prompt·提示词·pe·structured cot