分类问题常用评估指标

目录

一、二分类

[1、准确率( Accuracy)](#1、准确率( Accuracy))

[2、精确率( Precision)](#2、精确率( Precision))

[3、召回率 (Recall)](#3、召回率 (Recall))

4、F1-Score

[5、ROC 曲线](#5、ROC 曲线)

二、多分类

[1、准确率( Accuracy)](#1、准确率( Accuracy))

[2、精确率( Precision)and 召回率 (Recall)](#2、精确率( Precision)and 召回率 (Recall))

3、F1-Score

4、混淆矩阵


一、二分类

对于二分类问题, 它的样本只有正样本和负样本两类。 以垃圾邮件分类为例,正样本是垃圾邮件, 负样本是正常邮件。

TP(True Positive) :正样本被分类器判定为正样本的数量
FN(False Negative):正样本被判定为负样本

TN(True Negative) :负样本被分类器判定为负样本的数量
FP( False Positive):负样本被判定为正样本的数量

1、准确率( Accuracy)

准确率就是模型预测正确的样本数量占总样本数量的比例。

缺点:但是对于数据集不平衡的情况, 准确率就不具有代表性了。 比如: 有的类别样本多, 有的类别样本占比小。 若样本多的类别识别率很高, 样本少的类别都识别错误, 此时用准确率来评估模型的好坏显然不是很好的选择。

2、精确率( Precision)

被分类器判定为正样本的样本中真正的正样本所占的比例

3、召回率 (Recall)

所有正样本中被分类器判定为正样本的比例

4、F1-Score

精确率( P) 与召回率( R) 的调和平均

Precision 和 Recall 是一对相互矛盾的量, 当 P 高时, R 往往相对较低,当 R 高时, P 往往相对较低, 所以为了更好的评价分类器的性能, 一般使用F1-Score 作为评价标准来衡量分类器的综合性能。

5、ROC 曲线

真阳率TPR即为召回率,假阳率FPR即为精确率

FPR 作为横坐标, TPR 作为纵坐标得到 ROC 曲线。 当假阳率增加时真阳率也会增加, 因此, 它是一条向上增长的曲线。 一个好的分类器应该保证真阳率高而假阳率低, 所以 ROC 曲线越靠近左上角, 该分类器的性能越好。

二、多分类

1、准确率( Accuracy)

同上

2、精确率( Precision)and 召回率 (Recall)

需要分别计算每个类别的精确率和召回率,以及它们的平均值。

3、F1-Score

同样需要分别计算每个类别的 F1 分数, 及其平均值

4、混淆矩阵

对于 k 分类问题, 混淆矩阵为 k× k 的矩阵, 它的元素 表示第 i 类样本被分类器判定为第 j 类的数量。 如果所有样本都被正确分类, 则该矩阵为对角阵, 因此, 对角线上的值越大, 分类器的准确率越高。

相关推荐
B站计算机毕业设计之家3 分钟前
基于大数据热门旅游景点数据分析可视化平台 数据大屏 Flask框架 Echarts可视化大屏
大数据·爬虫·python·机器学习·数据分析·spark·旅游
最晚的py9 分钟前
ID3,C4.5,CART对比
决策树·机器学习
春风LiuK12 分钟前
虚实无界:VRAR如何重塑课堂与突破研究边界
人工智能·程序人生
Ayanami_Reii21 分钟前
区间不同数的个数-树状数组/线段树/莫队/主席树
数据结构·c++·算法·线段树·树状数组·主席树·莫队
李玮豪Jimmy30 分钟前
Day37:动态规划part10(300.最长递增子序列、674.最长连续递增序列 、718.最长重复子数组)
算法·动态规划
歌_顿37 分钟前
Embedding 模型word2vec/glove/fasttext/elmo/doc2vec/infersent学习总结
人工智能·算法
胡萝卜3.038 分钟前
深入C++可调用对象:从function包装到bind参数适配的技术实现
开发语言·c++·人工智能·机器学习·bind·function·包装器
Echo_NGC223739 分钟前
【KL 散度】深入理解 Kullback-Leibler Divergence:AI 如何衡量“像不像”的问题
人工智能·算法·机器学习·散度·kl
愤怒的可乐41 分钟前
从零构建大模型智能体:OpenAI Function Calling智能体实战
人工智能·大模型·智能体
XiaoMu_0011 小时前
基于深度学习的农作物叶片病害智能识别与防治系统
人工智能·深度学习