分类问题常用评估指标

目录

一、二分类

[1、准确率( Accuracy)](#1、准确率( Accuracy))

[2、精确率( Precision)](#2、精确率( Precision))

[3、召回率 (Recall)](#3、召回率 (Recall))

4、F1-Score

[5、ROC 曲线](#5、ROC 曲线)

二、多分类

[1、准确率( Accuracy)](#1、准确率( Accuracy))

[2、精确率( Precision)and 召回率 (Recall)](#2、精确率( Precision)and 召回率 (Recall))

3、F1-Score

4、混淆矩阵


一、二分类

对于二分类问题, 它的样本只有正样本和负样本两类。 以垃圾邮件分类为例,正样本是垃圾邮件, 负样本是正常邮件。

TP(True Positive) :正样本被分类器判定为正样本的数量
FN(False Negative):正样本被判定为负样本

TN(True Negative) :负样本被分类器判定为负样本的数量
FP( False Positive):负样本被判定为正样本的数量

1、准确率( Accuracy)

准确率就是模型预测正确的样本数量占总样本数量的比例。

缺点:但是对于数据集不平衡的情况, 准确率就不具有代表性了。 比如: 有的类别样本多, 有的类别样本占比小。 若样本多的类别识别率很高, 样本少的类别都识别错误, 此时用准确率来评估模型的好坏显然不是很好的选择。

2、精确率( Precision)

被分类器判定为正样本的样本中真正的正样本所占的比例

3、召回率 (Recall)

所有正样本中被分类器判定为正样本的比例

4、F1-Score

精确率( P) 与召回率( R) 的调和平均

Precision 和 Recall 是一对相互矛盾的量, 当 P 高时, R 往往相对较低,当 R 高时, P 往往相对较低, 所以为了更好的评价分类器的性能, 一般使用F1-Score 作为评价标准来衡量分类器的综合性能。

5、ROC 曲线

真阳率TPR即为召回率,假阳率FPR即为精确率

FPR 作为横坐标, TPR 作为纵坐标得到 ROC 曲线。 当假阳率增加时真阳率也会增加, 因此, 它是一条向上增长的曲线。 一个好的分类器应该保证真阳率高而假阳率低, 所以 ROC 曲线越靠近左上角, 该分类器的性能越好。

二、多分类

1、准确率( Accuracy)

同上

2、精确率( Precision)and 召回率 (Recall)

需要分别计算每个类别的精确率和召回率,以及它们的平均值。

3、F1-Score

同样需要分别计算每个类别的 F1 分数, 及其平均值

4、混淆矩阵

对于 k 分类问题, 混淆矩阵为 k× k 的矩阵, 它的元素 表示第 i 类样本被分类器判定为第 j 类的数量。 如果所有样本都被正确分类, 则该矩阵为对角阵, 因此, 对角线上的值越大, 分类器的准确率越高。

相关推荐
John_ToDebug20 分钟前
大模型提示词(Prompt)终极指南:从原理到实战,让AI输出质量提升300%
人工智能·chatgpt·prompt
居然JuRan20 分钟前
LangGraph从0到1:开启大模型开发新征程
人工智能
Miraitowa_cheems22 分钟前
LeetCode算法日记 - Day 11: 寻找峰值、山脉数组的峰顶索引
java·算法·leetcode
双向3329 分钟前
实战测试:多模态AI在文档解析、图表分析中的准确率对比
人工智能
用户51914958484531 分钟前
1989年的模糊测试技术如何在2018年仍发现Linux漏洞
人工智能·aigc
人类发明了工具32 分钟前
【深度学习-基础知识】单机多卡和多机多卡训练
人工智能·深度学习
用户51914958484543 分钟前
检索增强生成(RAG)入门指南:构建知识库与LLM协同系统
人工智能·aigc
CoovallyAIHub44 分钟前
方案 | 动车底部零部件检测实时流水线检测算法改进
深度学习·算法·计算机视觉
CoovallyAIHub1 小时前
方案 | 光伏清洁机器人系统详细技术实施方案
深度学习·算法·计算机视觉
星期天要睡觉1 小时前
机器学习——CountVectorizer将文本集合转换为 基于词频的特征矩阵
人工智能·机器学习·矩阵