hive迁移后修复分区慢,怎么办?

我有1个30TB的分区表,客户给的带宽只有600MB,按照150%的耗时来算,大概要迁移17小时。

使用hive自带的修复分区命令(一般修复分区比迁移时间长一点),可能要花24小时。于是打算用前面黄大佬的牛B方案。

msck repair table分区慢的原因:

与当前分区目录下的文件大小无关,只与分区目录【数量】有关,分区目录越多,二级(或子级)目录越多,分区就越慢


Hive增量迁移:创建表结构+数据迁移(distcp)+修复分区

1)创建表结构 读取cdh的建表语句,在tbds上创建表

2)数据迁移 同distcp

3)分区数据 msck repair table XX(alter table XX recover partitions) 修复太慢;改用查询元数据库,对比两边分区数据差异项,然后拼接成add partition语句,来执行。

例如之前修复一个1000个分区的表,需要8h(质疑?--我后面用了10T的表,测试了下200个一级分区也才3分钟修复)

hive:

一级分区:alter table XX add partition (etl_date=20240101);

alter table XX add partition (etl_date=20240101);

二级分区:alter table XX add partition (etl_yn=2024,etl_mn=01);

alter table XX add partition (etl_yn=2024,etl_mn=01);

改用add partition后,1000个分区的表,10min内

上面是他的方案,我实战测试下


实战测试

1、先查询指定库的分区有几个(源端查)

beeline -u 'xxxx'进入hive

show create table 表名

查看他的分区字段

这里我们能看到他就1个分区,而且字段是dt,接下来我们来查下dt有多少个

select distinct(dt) from xxx

查询这个表30T的表,大概花了110秒

我们能看到他是以日进行分区的。

并且有542行。我们先把这个复制出来,然后拼凑成sql。

alter table XX add partition (dt=20240101);

2、然后打开notepad++,用ctrl + f 正则处理一下

大概就处理成这样

测试:

在目标端,因为我们没有修复分区,所以这里迁移完数据和元数据后,他们是查不出来数据的。

beeline -u 'xxx'

select * from xxx limit 1;

没有数据

3、接下来我们将500多条语句丢进Hive执行一下(手动分区修复)。

然后我们在执行一下查询

select * from xxx limit 1;

有数据了,手动修复成功,比hive MSCK REPAIR TABLE table_name分区命令快n倍。

相关推荐
喂完待续2 小时前
Apache Hudi:数据湖的实时革命
大数据·数据仓库·分布式·架构·apache·数据库架构
计艺回忆路4 小时前
从Podman开始一步步构建Hadoop开发集群
hadoop
计算机源码社1 天前
分享一个基于Hadoop的二手房销售签约数据分析与可视化系统,基于Python可视化的二手房销售数据分析平台
大数据·hadoop·python·数据分析·毕业设计项目·毕业设计源码·计算机毕设选题
计算机毕设残哥1 天前
完整技术栈分享:基于Hadoop+Spark的在线教育投融资大数据可视化分析系统
大数据·hadoop·python·信息可视化·spark·计算机毕设·计算机毕业设计
计算机源码社2 天前
分享一个基于Hadoop+spark的超市销售数据分析与可视化系统,超市顾客消费行为分析系统的设计与实现
大数据·hadoop·数据分析·spark·计算机毕业设计源码·计算机毕设选题·大数据选题推荐
beijingliushao2 天前
33-Hive SQL DML语法之查询数据-2
hive·hadoop·sql
Lx3522 天前
如何正确选择Hadoop数据压缩格式:Gzip vs LZO vs Snappy
大数据·hadoop
让头发掉下来2 天前
Hive 创建事务表的方法
大数据·hive·hadoop
Q_Q19632884752 天前
python基于Hadoop的超市数据分析系统
开发语言·hadoop·spring boot·python·django·flask·node.js
计算机毕业设计木哥3 天前
计算机毕设大数据选题推荐 基于spark+Hadoop+python的贵州茅台股票数据分析系统【源码+文档+调试】
大数据·hadoop·python·计算机网络·spark·课程设计