统计学习方法(第二版) 第七章 支持向量机(第二节)

本节介绍线性可分支持向量机与软间隔最大化。


前言

回顾:

统计学习方法(第二版) 第七章 拉格朗日对偶性-CSDN博客

统计学习方法(第二版) 第七章 支持向量机(第一节)-CSDN博客

第一节学习线性可分支持向量机,对线性不可分的数据是不适用的,因为不是所有数据集都满足约束条件,也就是说对于约束条件无解。为了扩展到线性不可分问题,我们需要将硬间隔最大化改为软间隔最大化。

为什么研究线性可分支持向量机和软间隔最大化?

因为假设现实的数据集分布是线性可分得,但在实际对数据的获取可能存在偏差,导致数据集的分离边界模糊,并不是一个完全线性可分的数据集,这时为了得到模型和提高模型的泛化能力,需要对数据集进行一定的容忍,也就是加入一定的正则项,防止过拟合。


一、线性支持向量机

经过上一节的学习,这部分理解起来会更加容易。

二、学习的对偶算法

统计学习方法(第二版) 第七章 拉格朗日对偶性-CSDN博客

三、支持向量

线性可分支持向量机与软间隔最大化的支持向量与硬间隔最大化不同,其支持向量包括:在分类边界内部的点,在分类边界上和在分类边界以外误分类的点。

这里对支持向量的个人理解:

支持向量是对分类边界取到重要作用的向量(数据),故在硬间隔最大化时,由于数据集线性可分,对分类边界取决定性作用的是在分类边界上的点,而在软间隔最大化,数据集不是完全线性可分的,故对分类边界其决定作用的是在分类边界内部。在分类边界上和在分类边界以外的向量(数据)。

四.合页损失函数


总结

本节主要介绍线性可分支持向量机与软间隔最大化,学习问题和学习的对偶算法,以及软间隔最大化下的支持向量,最后简单介绍一下合页损失函数下的支持向量机。

相关推荐
轻抚酸~2 小时前
KNN(K近邻算法)-python实现
python·算法·近邻算法
lisw052 小时前
6G频段与5G频段有何不同?
人工智能·机器学习
2501_941623324 小时前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
不爱吃糖的程序媛4 小时前
华为 CANN:昇腾 AI 的异构计算架构核心与开源生态解析
人工智能·华为·架构
Yue丶越4 小时前
【C语言】字符函数和字符串函数
c语言·开发语言·算法
AKAMAI4 小时前
从客户端自适应码率流媒体迁移到服务端自适应码率流媒体
人工智能·云计算
jinxinyuuuus4 小时前
GTA 风格 AI 生成器:跨IP融合中的“视觉语义冲突”与风格适配损失
人工智能·网络协议
如何原谅奋力过但无声4 小时前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API5 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr
小白程序员成长日记5 小时前
2025.11.24 力扣每日一题
算法·leetcode·职场和发展