统计学习方法(第二版) 第七章 支持向量机(第二节)

本节介绍线性可分支持向量机与软间隔最大化。


前言

回顾:

统计学习方法(第二版) 第七章 拉格朗日对偶性-CSDN博客

统计学习方法(第二版) 第七章 支持向量机(第一节)-CSDN博客

第一节学习线性可分支持向量机,对线性不可分的数据是不适用的,因为不是所有数据集都满足约束条件,也就是说对于约束条件无解。为了扩展到线性不可分问题,我们需要将硬间隔最大化改为软间隔最大化。

为什么研究线性可分支持向量机和软间隔最大化?

因为假设现实的数据集分布是线性可分得,但在实际对数据的获取可能存在偏差,导致数据集的分离边界模糊,并不是一个完全线性可分的数据集,这时为了得到模型和提高模型的泛化能力,需要对数据集进行一定的容忍,也就是加入一定的正则项,防止过拟合。


一、线性支持向量机

经过上一节的学习,这部分理解起来会更加容易。

二、学习的对偶算法

统计学习方法(第二版) 第七章 拉格朗日对偶性-CSDN博客

三、支持向量

线性可分支持向量机与软间隔最大化的支持向量与硬间隔最大化不同,其支持向量包括:在分类边界内部的点,在分类边界上和在分类边界以外误分类的点。

这里对支持向量的个人理解:

支持向量是对分类边界取到重要作用的向量(数据),故在硬间隔最大化时,由于数据集线性可分,对分类边界取决定性作用的是在分类边界上的点,而在软间隔最大化,数据集不是完全线性可分的,故对分类边界其决定作用的是在分类边界内部。在分类边界上和在分类边界以外的向量(数据)。

四.合页损失函数


总结

本节主要介绍线性可分支持向量机与软间隔最大化,学习问题和学习的对偶算法,以及软间隔最大化下的支持向量,最后简单介绍一下合页损失函数下的支持向量机。

相关推荐
编码小哥2 小时前
OpenCV Haar级联分类器:人脸检测入门
人工智能·计算机视觉·目标跟踪
君义_noip2 小时前
信息学奥赛一本通 1661:有趣的数列 | 洛谷 P3200 [HNOI2009] 有趣的数列
c++·算法·组合数学·信息学奥赛·csp-s
程序员:钧念2 小时前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
数据与后端架构提升之路2 小时前
TeleTron 源码揭秘:如何用适配器模式“无缝魔改” Megatron-Core?
人工智能·python·适配器模式
英英_3 小时前
MATLAB数值计算基础教程
数据结构·算法·matlab
Chef_Chen3 小时前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
这张生成的图像能检测吗3 小时前
(论文速读)FR-IQA:面向广义图像质量评价:放松完美参考质量假设
人工智能·计算机视觉·图像增强·图像质量评估指标
一起养小猫3 小时前
LeetCode100天Day14-轮转数组与买卖股票最佳时机
算法·leetcode·职场和发展
hele_two3 小时前
快速幂算法
c++·python·算法
KG_LLM图谱增强大模型4 小时前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论