李宏毅机器学习笔记24

目录

摘要

Transformer代码部分理解


摘要

本篇文章继续学习李宏毅老师2025春季机器学习课程,学习内容是transformer的代码部分,通过代码帮助理解transformer。

Transformer代码部分理解

首先复习一下transformer的整体结构,如下图所示

先看下面这张图左下角"我爱你"为encoder的输入,右下角的"S I LOVE YOU"为decoder的输入,

右上角的"I LOVE YOU E"为真实的标签(答案)。用于计算decoder输出的损失。

下图的代码部分与上图对应起来

就是这样

其中的特殊字符"S"表示开始信号,"E"表示END信号,"P"为填充字符,即不足最大长度的部分用"P"填充。参考下图的例子。

模型的相关参数如下,512为字符转换为embedding的大小,前馈神经网络映射维度为2048,K,V维度为64,encoder和decoder的个数,multi-head的head数为8。

encoder部分代码

src_emb对应词表功能

通过词表将字符转化为向量

对于位置编码,基本公式如下图,对奇数偶数的位置不同也有不同的公式,pos为位置,例如维度为512时,pos为0-511之中的一个数。

位置编码对应实现代码如下图,div_term实现的是公式中共有的部分。最后的forward部分对应词向量与位置编码相加。

需要注意的是,下图的函数获取pad字符的位置。

为什么需要知道pad字符的位置?在下图的例子中,这个图可理解为两个字之间的相似性,pad符号原本是句子不存在的,所有在计算分数时应该去掉pad。

如何获取位置?使用一个符号矩阵,1表示为pad字符。

具体实现代码如下

实现encoder的具体函数,一个实现前馈神经网络,一个实现多头自注意力层。

多头自注意力层如下,其中Q,K矩阵维度相同。

decoder部分代码,decoder与encoder类似。

差别的地方在自注意力层的masked,实现时其实就是一个上三角矩阵,为1时就表示为pad,即被去除,所以在输入S时,只能看见S看不到"卷",在输入S和"卷"时,只能看见S和"卷"看不到"起"。

相关推荐
youngfengying2 分钟前
《轻量化 Transformers:开启计算机视觉新篇》
人工智能·计算机视觉
搞科研的小刘选手2 小时前
【同济大学主办】第十一届能源资源与环境工程研究进展国际学术会议(ICAESEE 2025)
大数据·人工智能·能源·材质·材料工程·地理信息
MARS_AI_2 小时前
云蝠智能 VoiceAgent 2.0:全栈语音交互能力升级
人工智能·自然语言处理·交互·信息与通信·agi
top_designer2 小时前
Substance 3D Stager:电商“虚拟摄影”工作流
人工智能·3d·设计模式·prompt·技术美术·教育电商·游戏美术
雷神大青椒2 小时前
离别的十字路口: 是否还记得曾经追求的梦想
人工智能·程序人生·职场和发展·玩游戏
心无旁骛~3 小时前
Masquerade 总结笔记:解锁野外人类视频的机器人政策学习潜力
笔记·机器人
m0_650108243 小时前
多模态大模型 VS. 图像视频生成模型浅析
人工智能·技术边界与协同·mllm与生成模型·技术浅谈
ai_xiaogui4 小时前
Mac苹果版Krita AI一键安装教程:AIStarter+ComfyUI零基础部署全流程(X86/ARM双架构)
arm开发·人工智能·macos·comfyui·一键部署·ai绘画教程·kritaai
lapiii3584 小时前
[智能体设计模式] 第11章:目标设定与监控模式
人工智能·设计模式
这张生成的图像能检测吗4 小时前
(论文速读)WFF-Net:用于表面缺陷检测的可训练权重特征融合卷积神经网络
人工智能·深度学习·神经网络·缺陷检测·图像分割