运行fastGPT 第四步 配置ONE API 添加模型

上次已经装好了所有的依赖和程序。

下面在网页中配置One API ,这个是大模型的接口。配置好了之后,就可以配置fastGPT了。

打开 OneAPI 页面 添加模型

这里要添加具体的付费模型的API接口填进来。

可以通过ip:3001访问OneAPI后台,**默认账号为root密码为123456。**在OneApi中添加合适的AI大模型渠道。 比如我用质谱AI的API。

第一次进入,先改密码。

创建渠道 也就是质谱AI的渠道 API KEY 添加进去

添加渠道,也就是添加模型 和接口。

这里,比如我想添加GLM质谱AI的大模型,那么就去官网找到这个。找到具体的模型名字。因为我是用作 AI聊天客服,应对日常咨询。因此不需要强大的推理,而是需要急速回答,和便宜。

https://www.bigmodel.cn/pricing

找到以上的就可以了,向量模型用来处理文本,和知识库的信息。所以要一同加入。

注意,这里要手动填入模型的完整名字哦。否则列表中可能没有。 有些新的模型版本,需要自己填写。
然后在你的大模型网站上,找到API KEY 粘贴进去,就可以了。 每次就会扣费了。

测试一下,这里通过了,表示模型已经就位。 可以调用了。

创建ONE API的令牌

创建令牌 其实也就是ONE API 的KEY 用于给fastGPT调用。

创建了新的令牌TOKEN之后,你就能复制它了,就是一串密钥sk开头的

然后fastGPT通过这个,来调用你的ONE API上的接口。 从而扣费。 这样就能实现对个人的管理了。 你可以通过ONE API来多给别人建立几个TOKEN ,每个人单独扣费。你能在后台看到他们的费用情况。

当然,您只是自己用,就随便。 给自己随便填写一个额度。使劲用就行。 保证您的大模型接口上有钱就行。

修改ONE API配置文件 添加参数

找到上一篇文章中的/fastgpt/docker-compose.yml 这个文件,修改下面的参数。 把你的ONE API得到的token粘贴进去。

好了,sk-xxxxxxXU73hQgQ6DaB01601610e41B992995cD929C6C4Ec,我的是这样的。

把oneapi,改成你的 ip。 把 ip填进去替换oneapi就行,其它的不用改

修改FastGPT配置文件 向其中添加模型信息

然后在去修改另一文件。/fastgpt/config.json

为fastGPT添加新模型GLM-4-AirX ,这个是和我们前面ONE API里加入的名字要一致。

bash 复制代码
 {
      "provider": "ZhiPu",
      "model": "GLM-4-AirX",  // 新添加的模型
      "name": "GLM-4-AirX",
      "maxContext": 8000,  // 你可以根据需要设置最大上下文
      "maxResponse": 4000,  // 最大回复
      "quoteMaxToken": 8000,// 最大引用内容
      "maxTemperature": 1,// 最大温度
      "charsPointsPrice": 0.01,  // n积分/1k token(商业版)
      "censor": false,// 是否开启敏感校验(商业版)
      "vision": false,// 是否支持图片输入
      "datasetProcess": true,
      "usedInClassify": true,
      "usedInExtractFields": true,
      "usedInToolCall": true,
      "usedInQueryExtension": true,
      "toolChoice": true,
      "functionCall": false,
      "customCQPrompt": "",
      "customExtractPrompt": "",
      "defaultSystemChatPrompt": "",
      "defaultConfig": {"top_p": 0.7 },// 请求API时,挟带一些默认配置(比如 GLM4 的 top_p)
      "fieldMap": {}
    }

添加向量模型

bash 复制代码
   {
      "provider": "ZhiPu",
      "model": "embedding-2",    // 模型名(与OneAPI对应)
      "name": "embedding-2",     // 模型展示名
      "charsPointsPrice":0.0005, // n积分/1k token
      "defaultToken": 700,       // 默认文本分割时候的 token
      "maxToken": 3000,          // 最大 token
      "weight": 100,             // 优先训练权重
      "defaultConfig": {

      } // 自定义额外参数。例如,如果希望使用 embedding3-large 的话,可以传入 dimensions:1024,来返回1024维度的向量。(目前必须小于1536维度)
    }


特别要注意的是,这个名子的大小写,千万不要写错了。 它一会儿大写一会儿小写。 错了的话,就找不到接口。报错了。

好了。然后在宝塔面板中,重启这两个docker

ok,搞定了,下面就是去配置FastGPT了。 下一篇文章见~。

相关推荐
YangYang9YangYan12 分钟前
2026年中专计算机专业证书报考指南:高性价比认证与职业路径规划
大数据·人工智能·学习·计算机视觉
DMD16818 分钟前
从仓库到门店:AI如何重构零售供应链的“最后一公里”
人工智能·科技·重构·零售·数字化转型·产业升级·ai技术开发
秃头小饼干19 分钟前
虚拟机性能优化实战技术文章大纲
人工智能·云计算
番茄迷人蛋21 分钟前
欢迎使用AI美食大师项目
人工智能·ai
InfiSight智睿视界22 分钟前
即时零售仓网管理的AI 智能化演进
大数据·人工智能·零售
汽车仪器仪表相关领域26 分钟前
MTX-AL:传统指针美学与现代数字科技的完美融合 - 模拟宽带空燃比计
大数据·人工智能·科技·单元测试·汽车·压力测试·可用性测试
森G27 分钟前
六、imx6ull驱动实现
linux·c语言·ubuntu
WHFENGHE32 分钟前
金具线夹测温在线监测装置:电力设备安全运行的核心技术支撑
大数据·人工智能·安全
Coding茶水间38 分钟前
基于深度学习的35种鸟类检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
chao10338 分钟前
ubuntu下业务运行环境搭建
linux·运维·ubuntu