OpenCV基础

3.2自适应阈值

运行截图

复制代码
import cv2
from matplotlib import pyplot as plt

# 读取图像
im1 = cv2.imread("./image/qp.jpg")

# 检查图像是否成功加载
if im1 is None:
    print("Error: Image not found or unable to read.")
    exit()

# 转换为灰度图
gray = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY)

# 应用全局阈值
ret, th1 = cv2.threshold(gray, 66, 255, cv2.THRESH_BINARY)

# 应用自适应阈值(均值)
th2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
                            cv2.THRESH_BINARY, 11, 2)

# 应用自适应阈值(高斯)并反二值化
th3 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                            cv2.THRESH_BINARY_INV, 11, 2)

# 设置标题列表(修正拼写错误)
titles = ["Original", "TH_BINARY", "TH_ADAPTIVE_MEAN_C", "TH_ADAPTIVE_GAUSSIAN_C_INV"]
images = [im1, th1, th2, th3]

# 使用matplotlib显示图像
for i in range(4):
    plt.subplot(2, 2, i + 1)
    plt.imshow(images[i], cmap='gray')  # 使用cmap='gray'来指定灰度颜色映射
    plt.title(titles[i])
    plt.axis('off')  # 关闭坐标轴

plt.tight_layout()  # 调整子图布局
plt.show()
  • ret, th1 = cv2.threshold(gray, 66, 255, cv2.THRESH_BINARY):对灰度图像gray进行全局二值化阈值处理。
    • 66是设定的阈值。
    • 255是最大值。
    • cv2.THRESH_BINARY表示阈值类型为二值化,即大于阈值的像素设置为最大值255(白色),小于等于阈值的像素设置为0(黑色),处理结果存储在th1中,ret是返回的阈值(这里未使用)。
    • th2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2):对灰度图像gray进行自适应阈值处理,采用均值方法。
      • 255是最大值。
      • cv2.ADAPTIVE_THRESH_MEAN_C表示自适应阈值类型为均值。
      • cv2.THRESH_BINARY表示阈值类型为二值化。
      • 11是邻域大小,即计算阈值时考虑的像素邻域大小。
      • 2是从均值或加权均值中减去的常数,用于调整阈值,处理结果存储在th2中。
      • th3 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2):对灰度图像gray进行自适应阈值处理,采用高斯方法,并进行反二值化。
        • 255是最大值。
        • cv2.ADAPTIVE_THRESH_GAUSSIAN_C表示自适应阈值类型为高斯。
        • cv2.THRESH_BINARY_INV表示阈值类型为反二值化,即大于阈值的像素设置为0,小于等于阈值的像素设置为255
        • 11是邻域大小。
        • 2是从加权均值中减去的常数,处理结果存储在th3中。
相关推荐
charley.layabox3 小时前
8月1日ChinaJoy酒会 | 游戏出海高端私享局 | 平台 × 发行 × 投资 × 研发精英畅饮畅聊
人工智能·游戏
DFRobot智位机器人4 小时前
AIOT开发选型:行空板 K10 与 M10 适用场景与选型深度解析
人工智能
想成为风筝6 小时前
从零开始学习深度学习—水果分类之PyQt5App
人工智能·深度学习·计算机视觉·pyqt
F_D_Z6 小时前
MMaDA:多模态大型扩散语言模型
人工智能·语言模型·自然语言处理
大知闲闲哟7 小时前
深度学习G2周:人脸图像生成(DCGAN)
人工智能·深度学习
飞哥数智坊7 小时前
Coze实战第15讲:钱都去哪儿了?Coze+飞书搭建自动记账系统
人工智能·coze
wenzhangli77 小时前
低代码引擎核心技术:OneCode常用动作事件速查手册及注解驱动开发详解
人工智能·低代码·云原生
千宇宙航8 小时前
闲庭信步使用图像验证平台加速FPGA的开发:第十课——图像gamma矫正的FPGA实现
图像处理·计算机视觉·缓存·fpga开发
潘达斯奈基~8 小时前
大模型的Temperature、Top-P、Top-K、Greedy Search、Beem Search
人工智能·aigc
倔强青铜三8 小时前
苦练Python第18天:Python异常处理锦囊
人工智能·python·面试