OpenCV基础

3.2自适应阈值

运行截图

复制代码
import cv2
from matplotlib import pyplot as plt

# 读取图像
im1 = cv2.imread("./image/qp.jpg")

# 检查图像是否成功加载
if im1 is None:
    print("Error: Image not found or unable to read.")
    exit()

# 转换为灰度图
gray = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY)

# 应用全局阈值
ret, th1 = cv2.threshold(gray, 66, 255, cv2.THRESH_BINARY)

# 应用自适应阈值(均值)
th2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
                            cv2.THRESH_BINARY, 11, 2)

# 应用自适应阈值(高斯)并反二值化
th3 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                            cv2.THRESH_BINARY_INV, 11, 2)

# 设置标题列表(修正拼写错误)
titles = ["Original", "TH_BINARY", "TH_ADAPTIVE_MEAN_C", "TH_ADAPTIVE_GAUSSIAN_C_INV"]
images = [im1, th1, th2, th3]

# 使用matplotlib显示图像
for i in range(4):
    plt.subplot(2, 2, i + 1)
    plt.imshow(images[i], cmap='gray')  # 使用cmap='gray'来指定灰度颜色映射
    plt.title(titles[i])
    plt.axis('off')  # 关闭坐标轴

plt.tight_layout()  # 调整子图布局
plt.show()
  • ret, th1 = cv2.threshold(gray, 66, 255, cv2.THRESH_BINARY):对灰度图像gray进行全局二值化阈值处理。
    • 66是设定的阈值。
    • 255是最大值。
    • cv2.THRESH_BINARY表示阈值类型为二值化,即大于阈值的像素设置为最大值255(白色),小于等于阈值的像素设置为0(黑色),处理结果存储在th1中,ret是返回的阈值(这里未使用)。
    • th2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2):对灰度图像gray进行自适应阈值处理,采用均值方法。
      • 255是最大值。
      • cv2.ADAPTIVE_THRESH_MEAN_C表示自适应阈值类型为均值。
      • cv2.THRESH_BINARY表示阈值类型为二值化。
      • 11是邻域大小,即计算阈值时考虑的像素邻域大小。
      • 2是从均值或加权均值中减去的常数,用于调整阈值,处理结果存储在th2中。
      • th3 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2):对灰度图像gray进行自适应阈值处理,采用高斯方法,并进行反二值化。
        • 255是最大值。
        • cv2.ADAPTIVE_THRESH_GAUSSIAN_C表示自适应阈值类型为高斯。
        • cv2.THRESH_BINARY_INV表示阈值类型为反二值化,即大于阈值的像素设置为0,小于等于阈值的像素设置为255
        • 11是邻域大小。
        • 2是从加权均值中减去的常数,处理结果存储在th3中。
相关推荐
QBoson22 分钟前
量子计算+AI:特征选择与神经网络优化创新应用
人工智能·神经网络·量子计算·图像分类·特征选择·“五岳杯”量子计算挑战赛·相干光量子计算机
Juicedata1 小时前
JuiceFS v1.3-Beta2:集成 Apache Ranger,实现更精细化的权限控制
运维·人工智能·ai
Work(沉淀版)3 小时前
DAY 40
人工智能·深度学习·机器学习
蓦然回首却已人去楼空4 小时前
Build a Large Language Model (From Scratch) 序章
人工智能·语言模型·自然语言处理
CM莫问4 小时前
<论文>(微软)WINA:用于加速大语言模型推理的权重感知神经元激活
人工智能·算法·语言模型·自然语言处理·大模型·推理加速
拾忆-eleven4 小时前
NLP学习路线图(二十六):自注意力机制
人工智能·深度学习
MYH5165 小时前
在NLP文本处理中,将字符映射到阿拉伯数字(构建词汇表vocab)的核心目的和意义
人工智能·深度学习·自然语言处理
要努力啊啊啊5 小时前
KV Cache:大语言模型推理加速的核心机制详解
人工智能·语言模型·自然语言处理
mzlogin7 小时前
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
人工智能
jndingxin7 小时前
OpenCV CUDA模块图像处理-----对图像执行 均值漂移过程(Mean Shift Procedure)函数meanShiftProc()
图像处理·opencv