OpenCV基础

3.2自适应阈值

运行截图

复制代码
import cv2
from matplotlib import pyplot as plt

# 读取图像
im1 = cv2.imread("./image/qp.jpg")

# 检查图像是否成功加载
if im1 is None:
    print("Error: Image not found or unable to read.")
    exit()

# 转换为灰度图
gray = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY)

# 应用全局阈值
ret, th1 = cv2.threshold(gray, 66, 255, cv2.THRESH_BINARY)

# 应用自适应阈值(均值)
th2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
                            cv2.THRESH_BINARY, 11, 2)

# 应用自适应阈值(高斯)并反二值化
th3 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                            cv2.THRESH_BINARY_INV, 11, 2)

# 设置标题列表(修正拼写错误)
titles = ["Original", "TH_BINARY", "TH_ADAPTIVE_MEAN_C", "TH_ADAPTIVE_GAUSSIAN_C_INV"]
images = [im1, th1, th2, th3]

# 使用matplotlib显示图像
for i in range(4):
    plt.subplot(2, 2, i + 1)
    plt.imshow(images[i], cmap='gray')  # 使用cmap='gray'来指定灰度颜色映射
    plt.title(titles[i])
    plt.axis('off')  # 关闭坐标轴

plt.tight_layout()  # 调整子图布局
plt.show()
  • ret, th1 = cv2.threshold(gray, 66, 255, cv2.THRESH_BINARY):对灰度图像gray进行全局二值化阈值处理。
    • 66是设定的阈值。
    • 255是最大值。
    • cv2.THRESH_BINARY表示阈值类型为二值化,即大于阈值的像素设置为最大值255(白色),小于等于阈值的像素设置为0(黑色),处理结果存储在th1中,ret是返回的阈值(这里未使用)。
    • th2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2):对灰度图像gray进行自适应阈值处理,采用均值方法。
      • 255是最大值。
      • cv2.ADAPTIVE_THRESH_MEAN_C表示自适应阈值类型为均值。
      • cv2.THRESH_BINARY表示阈值类型为二值化。
      • 11是邻域大小,即计算阈值时考虑的像素邻域大小。
      • 2是从均值或加权均值中减去的常数,用于调整阈值,处理结果存储在th2中。
      • th3 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2):对灰度图像gray进行自适应阈值处理,采用高斯方法,并进行反二值化。
        • 255是最大值。
        • cv2.ADAPTIVE_THRESH_GAUSSIAN_C表示自适应阈值类型为高斯。
        • cv2.THRESH_BINARY_INV表示阈值类型为反二值化,即大于阈值的像素设置为0,小于等于阈值的像素设置为255
        • 11是邻域大小。
        • 2是从加权均值中减去的常数,处理结果存储在th3中。
相关推荐
赵得C13 分钟前
智能体的范式革命:华为全栈技术链驱动下一代AI Agent
人工智能·华为·ai·ai编程
却道天凉_好个秋32 分钟前
OpenCV(十九):图像的加法运算
opencv·计算机视觉
嵌入式-老费1 小时前
自己动手写深度学习框架(感知机)
人工智能·深度学习
化作星辰1 小时前
使用 PyTorch来构建线性回归的实现
人工智能·pytorch·深度学习
mm-q29152227291 小时前
【天野学院5期】 第5期易语言半内存辅助培训班,主讲游戏——手游:仙剑奇侠传4,端游:神魔大陆2
人工智能·算法·游戏
谢景行^顾1 小时前
深度学习-损失函数
人工智能·深度学习
xier_ran1 小时前
关键词解释: LoRA(Low-Rank Adaptation)详解
人工智能
黄焖鸡能干四碗1 小时前
信息安全管理制度(Word)
大数据·数据库·人工智能·智慧城市·规格说明书
paopao_wu1 小时前
DeepSeek-OCR实战(01):基础运行环境搭建-Ubuntu
linux·人工智能·ubuntu·ai·ocr
Altair澳汰尔1 小时前
新闻速递丨Altair RapidMiner 数据分析和 AI 平台助力企业加速智能升级:扩展智能体 AI 及分析生态系统
人工智能·ai·数据分析·仿真·cae·rapidminer·数据自动化