pytorch张量复制方法介绍

在 PyTorch 中,张量本身没有 copy() 方法,但 PyTorch 提供了多种方法来复制张量。这些方法在功能和使用场景上各有不同,以下是详细的说明和总结。


PyTorch 中复制张量的方法

(1) clone()
  • 功能:创建一个张量的独立副本,原张量和新张量的内存独立。

  • 用法

    new_tensor = original_tensor.clone()

  • 特点

    • 克隆出的张量与原始张量无任何共享,修改副本不会影响原张量。
    • 保留张量的 requires_grad 属性(如果有)。

(2) detach()
  • 功能:从计算图中分离出一个张量,并返回一个新的张量。

  • 用法

    detached_tensor = original_tensor.detach()

  • 特点

    • clone() 类似,但主要用于处理需要梯度的张量。
    • 新张量不再记录梯度信息,通常用于停止梯度传播。

(3) copy_()
  • 功能:将一个张量的值复制到另一个张量中,目标张量的内存保持不变,值被覆盖。

  • 用法

    target_tensor.copy_(source_tensor)

  • 特点

    • 不创建新张量,仅修改目标张量的值。
    • 通常用于更新现有张量的数据。

(4) to()
  • 功能:将张量的数据复制到新的设备或改变其数据类型。

  • 用法

    new_tensor = original_tensor.to(device='cuda', dtype=torch.float32)

  • 特点

    • 如果指定的设备或数据类型不同,则会生成一个新张量,否则不会。
    • 常用于张量的设备转换(如从 CPU 到 GPU)。

(5) data.clone()
  • 功能 :与 clone() 类似,但直接从张量的 .data 属性创建副本。

  • 用法

    new_tensor = original_tensor.data.clone()

  • 特点

    • data 是旧的张量数据接口,直接访问底层数据。
    • 一般不推荐,建议使用 detach()clone()

总结

方法 是否创建新张量 是否共享内存 是否保留梯度 常用场景
clone() 完全独立副本,用于保留张量状态或操作后续数据。
detach() 分离计算图,停止梯度传播。
copy_() 否(覆盖) 用源张量覆盖目标张量值。
to() 是(条件) 改变设备或数据类型时会创建新张量。
相关推荐
.30-06Springfield1 分钟前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域1 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技1 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_11 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
小赖同学啊2 小时前
物联网数据安全区块链服务
开发语言·python·区块链
码荼2 小时前
学习开发之hashmap
java·python·学习·哈希算法·个人开发·小白学开发·不花钱不花时间crud
书玮嘎2 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
猫头虎3 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程
要努力啊啊啊3 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪