基于R语言的现代贝叶斯统计学方法(贝叶斯参数估计、贝叶斯回归、贝叶斯计算实践过程

专题一 贝叶斯统计学的思想与概念

1.1 信念函数与概率

1.2 事件划分与贝叶斯法则

1.3 稀少事件的概率估计

1.4 可交换性

1.5 预测模型的构建

专题二 单参数模型

2.1 二项式模型与置信域

2.2 泊松模型与后验分布

2.3 指数族模型与共轭先验

专题三 蒙特卡罗逼近

3.1 蒙特卡罗方法

3.2 任意函数的后验推断

3.3 预测分布采样

3.4 后验模型检验

专题四 正态模型

4.1 均值与条件方差的推断

4.2 基于数学期望的先验

4.3非正态分布的正态模型

专题五 吉布斯采样

5.1 半共轭先验分布

5.2 离散近似

5.3 条件分布中的采样

5.4 吉布斯采样算法及其性质

5.5 MCMC方法

专题六 多元正态分布与组比较

6.1 多元正态分布的密度

6.2 均值的半共轭先验

6.3 逆-Wishart分布

6.4 缺失数据与贝叶斯插补

6.5 组间比较

6.6分层模型的均值与方差

专题七 线性回归

7.1 回归的本质与最小二乘法

7.2 回归的贝叶斯估计

7.3 模型的贝叶斯比较

7.4 吉布斯采样与模型平均

7.5 指数模型比较与选择

7.6 总结与结论

7.7 Python的Copula相关包介绍

专题八 非共轭先验与M-H算法

8.1 广义线性模型

8.2 泊松模型Metropolis算法

8.3 Metropolis-Hastings算法

8.4 M-H算法与吉布斯采样的组合

专题九 线性与广义线性混合效应模型

9.1 多层回归模型

9.2 全条件分布

9.3 广义线性混合效应模型

专题十 有序数据的隐变量模型

10.1 有序Probit回归

10.2 秩的似然

10.3 高斯Copula模型

相关推荐
coding者在努力1 天前
从零开始:用PyTorch实现线性回归模型
人工智能·pytorch·线性回归
全栈开发圈3 天前
干货分享|如何从0到1掌握R语言数据分析
开发语言·数据分析·r语言
西猫雷婶5 天前
scikit-learn/sklearn学习|岭回归解读
开发语言·人工智能·机器学习·支持向量机·回归·scikit-learn·sklearn
小杜的生信筆記6 天前
基于R语言,“上百种机器学习模型”学习教程 | Mime包
开发语言·学习·机器学习·r语言·sci
在打豆豆的小潘学长6 天前
【R语言】多样本单细胞分析_SCTransform+Harmony方案(2)
开发语言·r语言
TS的美梦6 天前
ROGUE: 【张院士团队R包】一种基于熵的用于评估单细胞群体纯度的度量标准
开发语言·r语言
瓦香钵钵鸡6 天前
机器学习通关秘籍|Day 03:决策树、随机森林与线性回归
决策树·随机森林·机器学习·线性回归·最小二乘法·损失函数·信息熵
weixin_493202638 天前
R语言代码加密(1)
r语言
Tiger Z8 天前
《R for Data Science (2e)》免费中文翻译 (第3章) --- Data transformation(2)
r语言·数据科学·中文翻译
星石传说10 天前
使用R将nc文件转换为asc文件或者tif文件
r语言·生信