C# OpenCvSharp 部署3D人脸重建3DDFA-V3

目录

说明

效果

模型信息

landmark.onnx

net_recon.onnx

net_recon_mbnet.onnx

retinaface_resnet50.onnx

项目

代码

下载

参考


C# OpenCvSharp 部署3D人脸重建3DDFA-V3

说明

地址:https://github.com/wang-zidu/3DDFA-V3

3DDFA_V3 uses the geometric guidance of facial part segmentation for face reconstruction, improving the alignment of reconstructed facial features with the original image and excelling at capturing extreme expressions. The key idea is to transform the target and prediction into semantic point sets, optimizing the distribution of point sets to ensure that the reconstructed regions and the target share the same geometry.

效果

模型信息

landmark.onnx

Model Properties



Inputs


name:input

tensor:Float[1, 3, 224, 224]


Outputs


name:output

tensor:Float[1, 212]


net_recon.onnx

Model Properties



Inputs


name:input

tensor:Float[1, 3, 224, 224]


Outputs


name:output

tensor:Float[1, 257]


net_recon_mbnet.onnx

Model Properties



Inputs


name:input

tensor:Float[1, 3, 224, 224]


Outputs


name:output

tensor:Float[1, 257]


retinaface_resnet50.onnx

Model Properties



Inputs


name:input

tensor:Float[1, 3, 512, 512]


Outputs


name:loc

tensor:Float[1, 10752, 4]

name:conf

tensor:Float[1, 10752, 2]

name:land

tensor:Float[1, 10752, 10]


项目

代码

using OpenCvSharp;

using System;

using System.Diagnostics;

using System.Drawing;

using System.Runtime.InteropServices;

using System.Text;

using System.Windows.Forms;

namespace C__OpenCvSharp_部署3D人脸重建3DDFA_V3

{

public partial class Form1 : Form

{

public Form1()

{

InitializeComponent();

}

Stopwatch stopwatch = new Stopwatch();

Mat image;

string image_path;

string startupPath;

string model_path;

string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";

const string DllName = "3DDFA_V3Sharp.dll";

IntPtr engine;

/*

//初始化

extern "C" _declspec(dllexport) int __cdecl init(void** engine, char* model_path, char* msg);

//forward

extern "C" _declspec(dllexport) int __cdecl forward(void* engine, Mat* srcimg, char* msg, Mat* render_shape, Mat* render_face, Mat* seg_face, Mat* landmarks);

//释放

extern "C" _declspec(dllexport) void __cdecl destroy(void* engine);

*/

[DllImport(DllName, EntryPoint = "init", CallingConvention = CallingConvention.Cdecl)]

internal extern static int init(ref IntPtr engine, string model_path, StringBuilder msg);

[DllImport(DllName, EntryPoint = "forward", CallingConvention = CallingConvention.Cdecl)]

internal extern static int forward(IntPtr engine, IntPtr image, StringBuilder msg, IntPtr render_shape, IntPtr render_face, IntPtr seg_face, IntPtr landmarks);

[DllImport(DllName, EntryPoint = "destroy", CallingConvention = CallingConvention.Cdecl)]

internal extern static int destroy(IntPtr engine);

private void button1_Click(object sender, EventArgs e)

{

OpenFileDialog ofd = new OpenFileDialog();

ofd.Filter = fileFilter;

if (ofd.ShowDialog() != DialogResult.OK) return;

pictureBox1.Image = null;

pictureBox2.Image = null;

textBox1.Text = "";

image_path = ofd.FileName;

pictureBox1.Image = new Bitmap(image_path);

image = new Mat(image_path);

}

Mat render_shape;

Mat render_face;

Mat seg_face;

Mat landmarks;

private void button2_Click(object sender, EventArgs e)

{

if (image_path == "")

{

return;

}

button2.Enabled = false;

Application.DoEvents();

Cv2.DestroyAllWindows();

if (image != null) image.Dispose();

if (render_shape != null) render_shape.Dispose();

if (render_face != null) render_face.Dispose();

if (seg_face != null) seg_face.Dispose();

if (landmarks != null) landmarks.Dispose();

if (pictureBox1.Image != null) pictureBox1.Image.Dispose();

StringBuilder msg = new StringBuilder(512);

int out_imgs_size = 0;

image = new Mat(image_path);

render_shape = new Mat();

render_face = new Mat();

seg_face = new Mat();

landmarks = new Mat();

stopwatch.Restart();

int res = forward(engine, image.CvPtr, msg, render_shape.CvPtr, render_face.CvPtr, seg_face.CvPtr, landmarks.CvPtr);

if (res == 0)

{

stopwatch.Stop();

double costTime = stopwatch.Elapsed.TotalMilliseconds;

pictureBox2.Image = new Bitmap(landmarks.ToMemoryStream());

Cv2.ImShow("render_shape", render_shape);

Cv2.ImShow("render_face", render_face);

Cv2.ImShow("seg_face", seg_face);

textBox1.Text = $"耗时:{costTime:F2}ms";

}

else

{

textBox1.Text = "识别失败";

}

button2.Enabled = true;

}

private void Form1_Load(object sender, EventArgs e)

{

startupPath = Application.StartupPath;

model_path = startupPath + "\\model\\";

StringBuilder msg = new StringBuilder(512);

int res = init(ref engine, model_path, msg);

if (res == -1)

{

MessageBox.Show(msg.ToString());

return;

}

else

{

Console.WriteLine(msg.ToString());

}

image_path = startupPath + "\\test_img\\1.jpg";

pictureBox1.Image = new Bitmap(image_path);

image = new Mat(image_path);

}

private void Form1_FormClosing(object sender, FormClosingEventArgs e)

{

destroy(engine);

}

}

}

using OpenCvSharp;
using System;
using System.Diagnostics;
using System.Drawing;
using System.Runtime.InteropServices;
using System.Text;
using System.Windows.Forms;


namespace C__OpenCvSharp_部署3D人脸重建3DDFA_V3
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        Stopwatch stopwatch = new Stopwatch();
        Mat image;
        string image_path;
        string startupPath;
        string model_path;
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        const string DllName = "3DDFA_V3Sharp.dll";
        IntPtr engine;
        /*
         //初始化
        extern "C" _declspec(dllexport) int __cdecl  init(void** engine, char* model_path, char* msg);

        //forward
        extern "C" _declspec(dllexport) int __cdecl  forward(void* engine, Mat* srcimg, char* msg, Mat* render_shape, Mat* render_face, Mat* seg_face, Mat* landmarks);

        //释放
        extern "C" _declspec(dllexport) void __cdecl destroy(void* engine);
         */

        [DllImport(DllName, EntryPoint = "init", CallingConvention = CallingConvention.Cdecl)]
        internal extern static int init(ref IntPtr engine, string model_path, StringBuilder msg);

        [DllImport(DllName, EntryPoint = "forward", CallingConvention = CallingConvention.Cdecl)]
        internal extern static int forward(IntPtr engine, IntPtr image, StringBuilder msg, IntPtr render_shape, IntPtr render_face, IntPtr seg_face, IntPtr landmarks);

        [DllImport(DllName, EntryPoint = "destroy", CallingConvention = CallingConvention.Cdecl)]
        internal extern static int destroy(IntPtr engine);

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }


        Mat render_shape;
        Mat render_face;
        Mat seg_face;
        Mat landmarks;

        private void button2_Click(object sender, EventArgs e)
        {

            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;

            Application.DoEvents();

            Cv2.DestroyAllWindows();
            if (image != null) image.Dispose();
            if (render_shape != null) render_shape.Dispose();
            if (render_face != null) render_face.Dispose();
            if (seg_face != null) seg_face.Dispose();
            if (landmarks != null) landmarks.Dispose();
            if (pictureBox1.Image != null) pictureBox1.Image.Dispose();

            StringBuilder msg = new StringBuilder(512);
            int out_imgs_size = 0;
            image = new Mat(image_path);
            render_shape = new Mat();
            render_face = new Mat();
            seg_face = new Mat();
            landmarks = new Mat();

            stopwatch.Restart();

            int res = forward(engine, image.CvPtr, msg, render_shape.CvPtr, render_face.CvPtr, seg_face.CvPtr, landmarks.CvPtr);
            if (res == 0)
            {
                stopwatch.Stop();
                double costTime = stopwatch.Elapsed.TotalMilliseconds;

                pictureBox2.Image = new Bitmap(landmarks.ToMemoryStream());

                Cv2.ImShow("render_shape", render_shape);
                Cv2.ImShow("render_face", render_face);
                Cv2.ImShow("seg_face", seg_face);

                textBox1.Text = $"耗时:{costTime:F2}ms";
            }
            else
            {
                textBox1.Text = "识别失败";
            }
            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = Application.StartupPath;

            model_path = startupPath + "\\model\\";

            StringBuilder msg = new StringBuilder(512);

            int res = init(ref engine, model_path, msg);
            if (res == -1)
            {
                MessageBox.Show(msg.ToString());
                return;
            }
            else
            {
                Console.WriteLine(msg.ToString());
            }
            image_path = startupPath + "\\test_img\\1.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_FormClosing(object sender, FormClosingEventArgs e)
        {
            destroy(engine);
        }
    }
}

下载

源码下载

参考

https://github.com/hpc203/3DDFA-V3-opencv-dnn

相关推荐
AAA 建材批发王哥(天道酬勤)44 分钟前
机器学习和深度学习是人工智能(AI)领域的两个重要分支,它们都依赖于数学、统计学和计算机科学的基础知识。
人工智能·深度学习·机器学习
明朝百晓生1 小时前
【无线感知会议系列-21 】无线感知6G 研究愿景
网络·人工智能·算法·5g
&永恒的星河&1 小时前
深度剖析:NLP 领域基于 TF-IDF 和 Text-Rank 的关键字提取原理
人工智能·ai·自然语言处理·nlp·tf-idf·pagerank·textrank
编程乐趣2 小时前
Phi小模型开发教程:用C#开发本地部署AI聊天工具,只需CPU,不需要GPU,3G内存就可以运行,不输GPT-3.5
人工智能·c#·gpt-3
学测绘的小杨2 小时前
数字艺术类专业人才供需数据获取和分析研究
大数据·人工智能·算法
编码小哥2 小时前
opencv对直方图的计算和绘制
人工智能·opencv·计算机视觉
bohu832 小时前
opencv笔记1
人工智能·笔记·opencv
三月七(爱看动漫的程序员)2 小时前
Active Prompting with Chain-of-Thought for Large Language Models
数据库·人工智能·深度学习·学习·语言模型·自然语言处理
UQI-LIUWJ2 小时前
论文略读:ASurvey of Large Language Models for Graphs
人工智能·语言模型·自然语言处理
jingling5552 小时前
adb常用指令(完整版)
数据库·人工智能·python·adb·语音识别