树的连边II

频繁调用的函数 :如果某个函数被频繁调用,使用inline可以减少调用开销,提高程序性能。例如,在循环中频繁调用的函数

求树的直径:

两次dfs

还有求最长链和次长链的写法(max(dp[x][0],dp[x][1])):

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+10;
int n,head[N],nxt[N<<1],to[N<<1],cnt;
//head 
inline void add(int x,int y)
{
    ++cnt;
    nxt[cnt]=head[x];
    head[x]=cnt;
    to[cnt]=y;
    return;
}
int dp[N][2];
void dfs(int x,int fa)
{
    for(int i=head[x];i;i=nxt[i])
    {
        int y=to[i];
        if(y==fa) continue;
        dfs(y,x);
        if((dp[y][0]+1)>dp[x][0])
        //这里都是dp[y][0]进行比较
        //+1体现了数据的变化
            dp[x][1]=dp[x][0],dp[x][0]=dp[y][0]+1;
        else if((dp[y][0]+1)>dp[x][1])
            dp[x][1]=dp[y][0]+1;
    }//如果大于x的最长链则
    //dp[x][1]更新为新的最大链值
    //原来的最大值变为新的次大值
    //不大于最长链但是大于次长链就更新次长链
    return;
    //那就是dp[x]+dp[y]算出的是直径包含的边,点比边多1然后+1,最后输出次大长的链再-1
}
int main()
{
    cin>>n;
    for(int i=2;i<=n;i++)
    {
        int x,y;cin>>x>>y;
        add(x,y),add(y,x);
    }
    dfs(1,0);
    int ans=0;
    for(int i=1;i<=n;i++) ans=max(ans,dp[i][0]+dp[i][1]+1);
    cout<<ans-1;
    return 0;
}
cpp 复制代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e5+10;
int n,head[N],nxt[N<<1],to[N<<1],cnt;
//双向边开二倍

inline void add(int x,int y)
{
	++cnt;//边的编号
	nxt[cnt]=head[x];//将节点x当前的指向的边先给编号为cnt的边
	head[x]=cnt;//节点x现在指向cnt
	to[cnt]=y;//编号为cnt的边指向的节点
	return;
}
int dp[N][2];
void dfs(int x, int fa) {
    // 遍历当前节点x的所有邻接节点
    for (int i = head[x]; i; i = nxt[i]) {
        int y = to[i];  // 获取当前边的终点节点y
        if (y == fa) continue;  // 如果y是父节点,跳过,避免返回父节点形成环

        dfs(y, x);  // 递归调用dfs,以y为新的当前节点,x为新的父节点

        // 更新dp值,dp[x][0]表示从节点x出发的最长路径长度,dp[x][1]表示次长路径长度
        // dp[y][0] + 1表示从x到y的路径长度(加1是因为从x到y有一条边)
        if ((dp[y][0] + 1) > dp[x][0]) {
            // 如果从y出发的最长路径长度加1大于从x出发的当前最长路径长度
            dp[x][1] = dp[x][0];  // 更新次长路径长度为原来的最长路径长度
            dp[x][0] = dp[y][0] + 1;  // 更新最长路径长度为从y出发的最长路径长度加1
        } else if ((dp[y][0] + 1) > dp[x][1]) {
            // 如果从y出发的最长路径长度加1大于从x出发的当前次长路径长度
            dp[x][1] = dp[y][0] + 1;  // 更新次长路径长度为从y出发的最长路径长度加1
        }
    }
    return;  // 递归返回
}
int main()
{
	scanf("%d",&n);
	for(int i=2;i<=n;i++)
	{
		int x,y;scanf("%d%d",&x,&y);
		add(x,y),add(y,x);
	}
	dfs(1,0);
	int ans=0;
	for(int i=1;i<=n;i++) ans=max(ans,dp[i][0]+dp[i][1]+1);
	printf("%d\n",ans-1);
	return 0;
}
相关推荐
悄悄敲敲敲39 分钟前
C++:bfs解决多源最短路与拓扑排序问题习题
算法·宽度优先
会蹦的鱼1 小时前
算法4(力扣206)-反转链表
算法·leetcode·链表
黄雪超1 小时前
数据结构与算法面试专题——引入及归并排序
数据结构·算法·面试
曲奇是块小饼干_1 小时前
leetcode刷题记录(四十八)——128. 最长连续序列
java·算法·leetcode·职场和发展
adam_life2 小时前
http://noi.openjudge.cn/——4.7算法之搜索——【169:The Buses】
算法·回溯·递归深搜·线路判断
汤姆和杰瑞在瑞士吃糯米粑粑3 小时前
【优先算法】滑动窗口--结合例题详解学习
开发语言·数据结构·c++·算法
带多刺的玫瑰3 小时前
Leecode刷题C语言之统计打字方案数
javascript·数据结构·算法
paixiaoxin3 小时前
解读CVPR2024-3DGS论文分享|DNGaussian: Optimizing Sparse-View 3D Gaussian Radiance Fields with .....
人工智能·深度学习·算法·机器学习·3d·cvpr·3dgs
gaohualan3 小时前
3D Gaussian Splatting主程序代码解读
算法·3d
Ronin-Lotus3 小时前
嵌入式硬件篇---PID控制
单片机·嵌入式硬件·mcu·学习·程序人生·算法·硬件工程