电池预测 | 第22讲 基于GRU-Attention的锂电池剩余寿命预测

电池预测 | 第22讲 基于GRU-Attention的锂电池剩余寿命预测

目录

预测效果




基本描述

电池预测 | 第22讲 基于GRU-Attention的锂电池剩余寿命预测

锂电池作为现代电子设备的重要动力源,其剩余寿命预测成为了科研领域的热门话题。本文创新性提出基于GRU-Attention机制的锂电池剩余寿命预测方法,旨在通过深度学习技术,精准捕捉电池老化过程中的复杂动态模式,为智能电池管理提供有力支持。

GRU-Attention模型结合了门控循环单元(Gated Recurrent Unit, GRU)与注意力机制(Attention)的优势。GRU作为循环神经网络的一种,能够有效处理序列数据,捕捉时间序列中的长期依赖关系。注意力机制的引入,进一步提高预测的准确性与可靠性。

从NASA公开的电池数据集中提取关键特征(电池容量),构建了强大的GRU-Attention模型。训练过程中,模型通过学习历史数据中的模式与趋势,逐步优化参数,最终实现对锂电池剩余寿命的精准预测。实验证明,该方法在预测精度上显著优于传统方法,预测误差控制在极低范围内。

基于GRU-Attention的锂电池剩余寿命预测,不仅为电池的健康管理提供了科学依据,更在多个领域展现出广泛的应用前景。无论是智能手机、电动汽车,还是工业储能系统,这一技术都将助力优化电池使用策略,延长电池寿命,降低维护成本,提升设备可靠性。

运行环境Matlab2023b及以上

Matlab代码,运行环境要求MATLAB版本为2023b及其以上

往期回顾

截至目前,锂电池预测相关文章已发多篇,汇集如下:

锂电池SOH预测

电池预测 | 第19讲 基于BiGRU双向门控循环单元的锂电池SOH预测,附锂电池最新文章汇集

锂电池SOC估计

电池预测 | 第16讲 Matlab基于LSTM神经网络的锂电池锂电池SOC估计

电池预测 | 第15讲 Matlab基于CNN神经网络的锂电池锂电池SOC估计

电池预测 | 第14讲 Matlab基于BP神经网络的锂电池锂电池SOC估计

高创新 | PyTorch基于改进Informer模型的锂电池SOC估计

锂电池寿命预测

电池预测 | 第21讲 基于Gamma伽马模型结合EM算法和粒子滤波算法参数估计的锂电池剩余寿命预测

电池预测 | 第20讲 基于BiLSTM-Attention的锂电池剩余寿命预测

电池预测 | 第18讲 基于CNN-LSTM的锂电池剩余寿命预测

电池预测 | 第17讲 基于Transformer-BiGRU的锂电池剩余寿命预测

电池预测 | 第13讲 基于LSTM-Attention的锂电池剩余寿命预测

电池预测 | 第12讲 基于Transformer-GRU的锂电池剩余寿命预测

电池预测 | 第11讲 基于Transformer-BiLSTM的锂电池剩余寿命预测

电池预测 | 第10讲 基于Transformer-LSTM的锂电池剩余寿命预测

电池预测 | 第9讲 基于Transformer的锂电池剩余寿命预测

电池预测 | 第8讲 基于ARIMA的锂电池剩余寿命预测

电池预测 | 第7讲 基于SSA-SVR麻雀算法优化支持向量回归的锂离子电池剩余寿命预测

电池预测 | 第6讲 基于ALO-SVR蚁狮优化支持向量回归的锂离子电池剩余寿命预测

电池预测 | 第5讲 基于BiGRU锂电池剩余寿命预测

电池预测 | 第4讲 基于GRU锂电池剩余寿命预测

电池预测 | 第3讲 基于BiLSTM锂电池剩余寿命预测

电池预测 | 第2讲 基于LSTM锂电池剩余寿命预测

电池预测 | 第1讲 基于机器学习的锂电池寿命预测

程序设计

  • 完整程序和数据获取方式私信回复电池预测 | 第22讲 基于GRU-Attention的锂电池剩余寿命预测。
clike 复制代码
%% 清空环境
clear;%清工作区
clc;%清命令
close all;%关闭所有的Figure窗口 
format compact;%压缩空格
tic;%开始计时
%% 005号电池
load('B0005.mat')
m1=616; %有616个数据
n1=168; %有168个discharge放电数据
[~,index] = sortrows({B0005.cycle.type}.');
B0005.cycle = B0005.cycle(index);
clear index  %以上3行为将type排序
A=zeros(168,1); %A矩阵为168行1列的零矩阵
j=1;
for i=171:338
    A(j,1)=B0005.cycle(i).data.Capacity;
    i=i+1;
    j=j+1;
end
% 6号电池
load('B0006.mat')
m2=616;
n2=168;
[~,index] = sortrows({B0006.cycle.type}.');
B0006.cycle = B0006.cycle(index);
clear index
B=zeros(168,1);
j=1;
for i=171:338
    B(j,1)=B0006.cycle(i).data.Capacity;
    i=i+1;
    j=j+1;
end

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
audyxiao00110 分钟前
会议热点扫描|智慧教育顶级会议AIED 2025的研究热点可视化分析
人工智能·智慧教育·会议热点·aied
执笔论英雄11 分钟前
【梯度检查点】
人工智能
虫小宝15 分钟前
电商AI导购系统工程化实践:模型训练、部署与在线推理的架构设计
人工智能
Dreaming_of_you19 分钟前
pytorch/cv2/pil/torchvision处理图像缩小的最佳方案
人工智能·pytorch·python·opencv
shangjian00731 分钟前
AI-大语言模型LLM-Transformer架构3-嵌入和位置编码
人工智能·语言模型·transformer
ws20190739 分钟前
智驾与电池双线突破?AUTO TECH China 2026广州新能源汽车展解码产业新局
大数据·人工智能·科技·汽车
美狐美颜SDK开放平台39 分钟前
直播场景下抖动特效的实现方案:美颜sdk开发经验分享
前端·人工智能·美颜sdk·直播美颜sdk·视频美颜sdk
2501_941982051 小时前
企业微信外部群精准运营:API 主动推送消息开发指南
大数据·人工智能·企业微信
Testopia1 小时前
走一遍 AI 学习之路 —— AI实例系列说明
开发语言·人工智能·python
琅琊榜首20201 小时前
用AI打造付费短篇小说脑洞:从灵感激活到落地变现
人工智能