电池预测 | 第22讲 基于GRU-Attention的锂电池剩余寿命预测

电池预测 | 第22讲 基于GRU-Attention的锂电池剩余寿命预测

目录

预测效果




基本描述

电池预测 | 第22讲 基于GRU-Attention的锂电池剩余寿命预测

锂电池作为现代电子设备的重要动力源,其剩余寿命预测成为了科研领域的热门话题。本文创新性提出基于GRU-Attention机制的锂电池剩余寿命预测方法,旨在通过深度学习技术,精准捕捉电池老化过程中的复杂动态模式,为智能电池管理提供有力支持。

GRU-Attention模型结合了门控循环单元(Gated Recurrent Unit, GRU)与注意力机制(Attention)的优势。GRU作为循环神经网络的一种,能够有效处理序列数据,捕捉时间序列中的长期依赖关系。注意力机制的引入,进一步提高预测的准确性与可靠性。

从NASA公开的电池数据集中提取关键特征(电池容量),构建了强大的GRU-Attention模型。训练过程中,模型通过学习历史数据中的模式与趋势,逐步优化参数,最终实现对锂电池剩余寿命的精准预测。实验证明,该方法在预测精度上显著优于传统方法,预测误差控制在极低范围内。

基于GRU-Attention的锂电池剩余寿命预测,不仅为电池的健康管理提供了科学依据,更在多个领域展现出广泛的应用前景。无论是智能手机、电动汽车,还是工业储能系统,这一技术都将助力优化电池使用策略,延长电池寿命,降低维护成本,提升设备可靠性。

运行环境Matlab2023b及以上

Matlab代码,运行环境要求MATLAB版本为2023b及其以上

往期回顾

截至目前,锂电池预测相关文章已发多篇,汇集如下:

锂电池SOH预测

电池预测 | 第19讲 基于BiGRU双向门控循环单元的锂电池SOH预测,附锂电池最新文章汇集

锂电池SOC估计

电池预测 | 第16讲 Matlab基于LSTM神经网络的锂电池锂电池SOC估计

电池预测 | 第15讲 Matlab基于CNN神经网络的锂电池锂电池SOC估计

电池预测 | 第14讲 Matlab基于BP神经网络的锂电池锂电池SOC估计

高创新 | PyTorch基于改进Informer模型的锂电池SOC估计

锂电池寿命预测

电池预测 | 第21讲 基于Gamma伽马模型结合EM算法和粒子滤波算法参数估计的锂电池剩余寿命预测

电池预测 | 第20讲 基于BiLSTM-Attention的锂电池剩余寿命预测

电池预测 | 第18讲 基于CNN-LSTM的锂电池剩余寿命预测

电池预测 | 第17讲 基于Transformer-BiGRU的锂电池剩余寿命预测

电池预测 | 第13讲 基于LSTM-Attention的锂电池剩余寿命预测

电池预测 | 第12讲 基于Transformer-GRU的锂电池剩余寿命预测

电池预测 | 第11讲 基于Transformer-BiLSTM的锂电池剩余寿命预测

电池预测 | 第10讲 基于Transformer-LSTM的锂电池剩余寿命预测

电池预测 | 第9讲 基于Transformer的锂电池剩余寿命预测

电池预测 | 第8讲 基于ARIMA的锂电池剩余寿命预测

电池预测 | 第7讲 基于SSA-SVR麻雀算法优化支持向量回归的锂离子电池剩余寿命预测

电池预测 | 第6讲 基于ALO-SVR蚁狮优化支持向量回归的锂离子电池剩余寿命预测

电池预测 | 第5讲 基于BiGRU锂电池剩余寿命预测

电池预测 | 第4讲 基于GRU锂电池剩余寿命预测

电池预测 | 第3讲 基于BiLSTM锂电池剩余寿命预测

电池预测 | 第2讲 基于LSTM锂电池剩余寿命预测

电池预测 | 第1讲 基于机器学习的锂电池寿命预测

程序设计

  • 完整程序和数据获取方式私信回复电池预测 | 第22讲 基于GRU-Attention的锂电池剩余寿命预测。
clike 复制代码
%% 清空环境
clear;%清工作区
clc;%清命令
close all;%关闭所有的Figure窗口 
format compact;%压缩空格
tic;%开始计时
%% 005号电池
load('B0005.mat')
m1=616; %有616个数据
n1=168; %有168个discharge放电数据
[~,index] = sortrows({B0005.cycle.type}.');
B0005.cycle = B0005.cycle(index);
clear index  %以上3行为将type排序
A=zeros(168,1); %A矩阵为168行1列的零矩阵
j=1;
for i=171:338
    A(j,1)=B0005.cycle(i).data.Capacity;
    i=i+1;
    j=j+1;
end
% 6号电池
load('B0006.mat')
m2=616;
n2=168;
[~,index] = sortrows({B0006.cycle.type}.');
B0006.cycle = B0006.cycle(index);
clear index
B=zeros(168,1);
j=1;
for i=171:338
    B(j,1)=B0006.cycle(i).data.Capacity;
    i=i+1;
    j=j+1;
end

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
格林威几秒前
Baumer相机水果表皮瘀伤识别:实现无损品质分级的 7 个核心方法,附 OpenCV+Halcon 实战代码!
人工智能·opencv·计算机视觉·视觉检测·工业相机·sdk开发·堡盟相机
rainbow7242441 分钟前
AI证书选型深度分析:如何根据职业目标评估其真正价值
人工智能·机器学习
AI科技星3 分钟前
从ZUFT光速螺旋运动求导推出自然常数e
服务器·人工智能·线性代数·算法·矩阵
love530love6 分钟前
Windows 下 GCC 编译器安装与排错实录
人工智能·windows·python·gcc·msys2·gtk·msys2 mingw 64
倔强的石头1066 分钟前
归纳偏好 —— 机器学习的 “择偶标准”
人工智能·机器学习
zhangshuang-peta7 分钟前
通过MCP实现安全的多渠道人工智能集成
人工智能·ai agent·mcp·peta
听麟7 分钟前
HarmonyOS 6.0+ APP AR文旅导览系统开发实战:空间定位与文物交互落地
人工智能·深度学习·华为·ar·wpf·harmonyos
AI_567810 分钟前
阿里云OSS成本优化:生命周期规则+分层存储省70%
运维·数据库·人工智能·ai
龙山云仓14 分钟前
MES系统超融合架构
大数据·数据库·人工智能·sql·机器学习·架构·全文检索
zxsz_com_cn14 分钟前
设备预测性维护指的是什么 设备预测性维护传感器的作用
人工智能