游程编码RLE的简单解释

RLE(Run-Length Encoding,游程编码)

RLE是一种用于表示图像中目标区域的编码方法,尤其在图像分割任务中常用。它的核心思想是通过记录目标像素的起始位置和连续长度,来压缩表示目标区域。

基本原理

  1. 像素位置编号

    • 图像中的像素按从左到右、从上到下的顺序编号,从 1 开始。

    • 例如,一张 5x5 的图像,像素编号如下:

      复制代码
      1  2  3  4  5
      6  7  8  9 10
      11 12 13 14 15
      16 17 18 19 20
      21 22 23 24 25
  2. 编码方式

    • RLE 编码由成对的值组成,每对值表示一个连续的像素段。
    • 每对的第一个值是 起始像素位置 ,第二个值是 连续像素的长度
    • 例如,编码 [3, 2] 表示从第 3 个像素开始,连续 2 个像素是目标区域。

示例

假设有一张 5x5 的二值图像,目标区域用 1 表示,背景为 0:

复制代码
0 0 1 1 0
0 1 1 0 0
1 1 1 1 1
0 1 1 0 0
0 0 1 1 0

按行扫描图像,记录目标像素的位置和长度:

  • 第 1 行:目标像素从第 3 个像素开始,长度为 2,编码为 [3, 2]
  • 第 2 行:目标像素从第 7 个像素开始,长度为 2,编码为 [7, 2]
  • 第 3 行:目标像素从第 11 个像素开始,长度为 5,编码为 [11, 5]
  • 第 4 行:目标像素从第 17 个像素开始,长度为 2,编码为 [17, 2]
  • 第 5 行:目标像素从第 23 个像素开始,长度为 2,编码为 [23, 2]

最终的 RLE 编码为:

复制代码
[3, 2, 7, 2, 11, 5, 17, 2, 23, 2]

优点

  • 高效压缩:对于连续的目标区域,RLE 可以大幅减少存储空间。
  • 精确表示:能够精确到像素级别,适合复杂形状的目标。

缺点

  • 数据量大:如果目标区域分散或不连续,RLE 编码可能会较长。
  • 不适合实时任务:解码和处理 RLE 编码需要一定计算量。

适用场景

  • 图像分割:如医学图像、工业缺陷检测。
  • 目标区域标注:用于训练分割模型。
相关推荐
星际码仔29 分钟前
AutoGLM沉思,仍然没有摆脱DeepResearch产品的通病
人工智能·ai编程·chatglm (智谱)
喝拿铁写前端1 小时前
前端与 AI 结合的 10 个可能路径图谱
前端·人工智能
城电科技2 小时前
城电科技|零碳园区光伏太阳花绽放零碳绿色未来
人工智能·科技·能源
HyperAI超神经2 小时前
Stable Virtual Camera 重新定义3D内容生成,解锁图像新维度;BatteryLife助力更精准预测电池寿命
图像处理·人工智能·3d·数学推理·视频生成·对话语音生成·蛋白质突变
Chaos_Wang_2 小时前
NLP高频面试题(二十三)对抗训练的发展脉络,原理,演化路径
人工智能·自然语言处理
Yeats_Liao2 小时前
华为开源自研AI框架昇思MindSpore应用案例:基于MindSpore框架实现PWCNet光流估计
人工智能·华为
说私域2 小时前
人工智能赋能美妆零售数字化转型:基于开源AI大模型的S2B2C商城系统构建
人工智能·小程序·开源·零售
zew10409945883 小时前
基于深度学习的手势识别系统设计
人工智能·深度学习·算法·数据集·pyqt·yolov5·训练模型
weixin_478689763 小时前
pytorch与其他ai工具
人工智能·pytorch·python
豆芽8193 小时前
核函数(机器学习深度学习)
人工智能·深度学习