游程编码RLE的简单解释

RLE(Run-Length Encoding,游程编码)

RLE是一种用于表示图像中目标区域的编码方法,尤其在图像分割任务中常用。它的核心思想是通过记录目标像素的起始位置和连续长度,来压缩表示目标区域。

基本原理

  1. 像素位置编号

    • 图像中的像素按从左到右、从上到下的顺序编号,从 1 开始。

    • 例如,一张 5x5 的图像,像素编号如下:

      复制代码
      1  2  3  4  5
      6  7  8  9 10
      11 12 13 14 15
      16 17 18 19 20
      21 22 23 24 25
  2. 编码方式

    • RLE 编码由成对的值组成,每对值表示一个连续的像素段。
    • 每对的第一个值是 起始像素位置 ,第二个值是 连续像素的长度
    • 例如,编码 [3, 2] 表示从第 3 个像素开始,连续 2 个像素是目标区域。

示例

假设有一张 5x5 的二值图像,目标区域用 1 表示,背景为 0:

复制代码
0 0 1 1 0
0 1 1 0 0
1 1 1 1 1
0 1 1 0 0
0 0 1 1 0

按行扫描图像,记录目标像素的位置和长度:

  • 第 1 行:目标像素从第 3 个像素开始,长度为 2,编码为 [3, 2]
  • 第 2 行:目标像素从第 7 个像素开始,长度为 2,编码为 [7, 2]
  • 第 3 行:目标像素从第 11 个像素开始,长度为 5,编码为 [11, 5]
  • 第 4 行:目标像素从第 17 个像素开始,长度为 2,编码为 [17, 2]
  • 第 5 行:目标像素从第 23 个像素开始,长度为 2,编码为 [23, 2]

最终的 RLE 编码为:

复制代码
[3, 2, 7, 2, 11, 5, 17, 2, 23, 2]

优点

  • 高效压缩:对于连续的目标区域,RLE 可以大幅减少存储空间。
  • 精确表示:能够精确到像素级别,适合复杂形状的目标。

缺点

  • 数据量大:如果目标区域分散或不连续,RLE 编码可能会较长。
  • 不适合实时任务:解码和处理 RLE 编码需要一定计算量。

适用场景

  • 图像分割:如医学图像、工业缺陷检测。
  • 目标区域标注:用于训练分割模型。
相关推荐
拾零吖6 小时前
李宏毅 Deep Learning
人工智能·深度学习·机器学习
华芯邦6 小时前
广东充电芯片助力新能源汽车车载系统升级
人工智能·科技·车载系统·汽车·制造
时空无限7 小时前
说说transformer 中的掩码矩阵以及为什么能掩盖住词语
人工智能·矩阵·transformer
查里王7 小时前
AI 3D 生成工具知识库:当前产品格局与测评总结
人工智能·3d
武子康7 小时前
AI-调查研究-76-具身智能 当机器人走进生活:具身智能对就业与社会结构的深远影响
人工智能·程序人生·ai·职场和发展·机器人·生活·具身智能
小鹿清扫日记7 小时前
从蛮力清扫到 “会看路”:室外清洁机器人的文明进阶
人工智能·ai·机器人·扫地机器人·具身智能·连合直租·有鹿巡扫机器人
技术小黑7 小时前
Transformer系列 | Pytorch复现Transformer
pytorch·深度学习·transformer
fanstuck8 小时前
Prompt提示工程上手指南(六):AI避免“幻觉”(Hallucination)策略下的Prompt
人工智能·语言模型·自然语言处理·nlp·prompt
zhangfeng11338 小时前
win7 R 4.4.0和RStudio1.25的版本兼容性以及系统区域设置有关 导致Plots绘图面板被禁用,但是单独页面显示
开发语言·人工智能·r语言·生物信息
DogDaoDao9 小时前
神经网络稀疏化设计构架方法和原理深度解析
人工智能·pytorch·深度学习·神经网络·大模型·剪枝·网络稀疏