TangoFlux 本地部署实用教程:开启无限音频创意脑洞

一、介绍

TangoFlux是通过流匹配和 Clap-Ranked 首选项优化,实现超快速、忠实的文本到音频生成的模型。

  • 本模型由 Stability AI 提供支持
  • 🚀 TangoFlux 可以在单个 A40 GPU 上在 ~3 秒内生成长达 34.1kHz 的立体声音频。

二、部署

安装方式非常简单

1.克隆并安装环境

复制代码
pip install git+https://github.com/declare-lab/TangoFlux

2.推理

TangoFlux 可以生成长达 30 秒的音频。使用 Python API 时,必须将 duration 传递给函数。请注意,持续时间应在 1 到 30 之间。model.generate

Web 界面

运行以下命令以启动 Web 界面。

复制代码
tangoflux-demo

首次运行web界面的启动命令后,项目会自动下载所需的模型,此时需要保持网络畅通,耐心等待:

出现ip地址即端口号后即可进行访问。

命令行界面

使用 CLI 从文本直接生成音频。

复制代码
tangoflux "Hammer slowly hitting the wooden table" output.wav --duration 10 --steps 50
Python 接口
复制代码
import torchaudio
from tangoflux import TangoFluxInference

model = TangoFluxInference(name='declare-lab/TangoFlux')
audio = model.generate('Hammer slowly hitting the wooden table', steps=50, duration=10)

torchaudio.save('output.wav', audio, 44100)

官方评估表明,使用 50 个步骤进行推理会产生最佳结果。CFG 等级为 3.5、4 和 4.5 可产生相似的质量输出。25 步推理以更快的速度产生类似的音频质量。

训练

官方使用 Hugging Face 的包进行多 GPU 训练。Run 以设置您的运行配置。默认的 accelerate 配置位于 文件夹中。请在 中指定训练文件的路径。的样本 和 已提供。将它们替换为您自己的音频。accelerate``accelerate config``configs``configs/tangoflux_config.yaml``train.json``val.json

tangoflux_config.yaml 定义训练文件路径和模型超参数:

复制代码
CUDA_VISIBLE_DEVICES=0,1 accelerate launch --config_file='configs/accelerator_config.yaml' tangoflux/train.py   --checkpointing_steps="best" --save_every=5 --config='configs/tangoflux_config.yaml'

要执行 DPO 训练,请修改训练文件,使每个数据点都包含"chosen"、"reject"、"caption"和"duration"字段。请在 中指定训练文件的路径。中提供了一个示例。将其替换为您自己的音频。configs/tangoflux_config.yaml``train_dpo.json

复制代码
CUDA_VISIBLE_DEVICES=0,1 accelerate launch --config_file='configs/accelerator_config.yaml' tangoflux/train_dpo.py   --checkpointing_steps="best" --save_every=5 --config='configs/tangoflux_config.yaml'

评估脚本

TangoFlux 与其他音频生成模型

这些关键比较指标包括:

  • Output Length : Represents the duration of the generated audio.
  • FD openl3 : Fréchet Distance.
  • KL passt : KL divergence.
  • CLAP score : Alignment score.

所有推理时间都在同一个 A40 GPU 上观察到。可训练参数的计数在 #Params 列中报告。

参数 期间 步骤 FD 系列openl3 ↓ 吉隆坡通行证 ↓ 拍得分 ↑ 是 ↑ 推理时间 (s)
AudioLDM 2 (Large) 712 米 10 秒 200 108.3 1.81 0.419 7.9 24.8
Stable Audio Open 1056 米 47 秒 100 89.2 2.58 0.291 9.9 8.6
Tango 2 866 米 10 秒 200 108.4 1.11 0.447 9.0 22.8
TangoFlux(基础) 515 分钟 30 秒 50 80.2 1.22 0.431 11.7 3.7
TangoFlux 515 分钟 30 秒 50 75.1 1.15 0.480 12.2 3.7
相关推荐
Coding茶水间5 分钟前
基于深度学习的肾结石检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
Blossom.11831 分钟前
基于多模态大模型的工业质检系统:从AOI到“零样本“缺陷识别的产线实践
运维·人工智能·python·机器学习·自动化·测试用例·知识图谱
美狐美颜sdk35 分钟前
什么是美颜SDK?一套成熟直播美颜SDK需要解决哪些工程技术问题?
人工智能·美颜sdk·第三方美颜sdk·视频美颜sdk·人脸美型sdk
无代码专家1 小时前
无代码:打破技术桎梏,重构企业数字化落地新范式
大数据·人工智能·重构
usrcnusrcn1 小时前
告别PoE管理盲区:有人物联网工业交换机如何以智能供电驱动工业未来
大数据·网络·人工智能·物联网·自动化
雍凉明月夜1 小时前
视觉opencv学习笔记Ⅴ-数据增强(1)
人工智能·python·opencv·计算机视觉
骚戴1 小时前
深入解析:Gemini 3.0 Pro 的 SSE 流式响应与跨区域延迟优化实践
java·人工智能·python·大模型·llm
CNRio1 小时前
从智能穿戴设备崛起看中国科技自立自强的创新实践
人工智能·科技·物联网
疾风sxp1 小时前
nl2sql技术实现自动sql生成之Spring AI Alibaba Nl2sql
java·人工智能
程序猿追1 小时前
使用GeeLark+亮数据,做数据采集打造爆款内容
运维·服务器·人工智能·机器学习·架构