在亚马逊云科技上用AI提示词优化功能写出漂亮提示词(上)

提示工程(Prompt Engineering)对各位小伙伴们来说是再熟悉不过了,提示词工程技术是通过编写指令词,指导开发者们调用AI基础模型(FMs)获得期望的响应。但是经常写提示词的朋友们会知道,为了获取理想的输出,我们可能需要花费数月时间不断进行实验和调整才能得到最优的提示词,同时不同基础模型的提示词最佳实践也不尽相同,这意味着我们要设计兼容不同模型类别的提示词。此外提示词通常是与特定模型和特定任务场景所匹配的,当更换不同的基础模型时,适用于其他模型的提示词性能无法得到保证。提示工程调优的巨大工作量常常拖慢了我们开发基于不同模型的生成式AI应用。

今天小李哥想给大家分享的是如何利用亚马逊云科技AI大模型管理平台 - Amazon Bedrock提示优化(Prompt Optimization) 功能,为我们的生成式AI应用优化提示词,我们只需要通过简单的API 调用或在Amazon Bedrock控制台上点击一个按钮即可完成提示词的优化,轻松写出美丽提示词。

在本系列的上篇中,小李哥通过一个真实场景手把手带大家通过提示词优化功能,无痛生成完美提示词,提升生成式AI应用的表现。在下篇中我们会讨论我们通过提示词优化功能优化过的提示词,在提示词数据集上性能基准测试结果和模型回复效果提升。

提示词优化功能所支持的模型

目前Amazon Bedrock的提示优化功能支持以下基础模型的提示词优化:Anthropic Claude 3 系列(Haiku、Sonnet、Opus、Claude-3.5-Sonnet)、Meta Llama 3 70B 和 Llama 3.1 70B、Mistral Large 以及 Amazon Titan Text Premier。

具体实操步骤

提示优化可以显著提升生成式AI应用的性能,接下来我们将通过优化过的提示词,分析企业客服与用户通话或聊天的记录,并对基于用户的通话内容,通过AI预测对用户问题的处理步骤。

  1. 在亚马逊云科技控制台中,进入Amazon Bedrock控制台的导航窗格中,选择"Prompt management"(提示词管理)界面。

  2. 选择"Create prompt"创建提示词。

  3. 输入提示词的名称和备注描述,然后选择"Create"创建。

4.接下来我们进入到了Prompt编辑界面,我们在User message字段中,输入希望进行优化的提示词原文。以下图片中的例子中,我们希望优化一个关于企业客服中分析通话或聊天记录,并基于用户回复指导客服下一步的操作,可选的操作如下:

等待客户继续输入(Wait for customer input)

转向人工客服(Assign agent)

升级处理转到客服经理(Escalate)

在提示词编辑界面的"User Message"部分中,我们输入以下英文提示词

5.在右侧的Configurations配置栏中,在"Generative AI resource"标题下方,我们选择"模型(Models)"类别,并选择我们想使用的模型。在本场景下,我们使用了Anthropic Claude 3.5 Sonnet。

6.接下来我们点击 "Optimize"开始优化。此时界面中会弹出一个窗口,提示我们的提示词正在进行优化。

  1. 当优化完成后,我们将看到原始提示和优化后提示的并排的对比界面,便于大家对比优化结果。
  1. 接下来我们将需要被分析的用户通话记录"transcript"添加到"test variable"的变量值中,作为应用提示词进行分析的内容,然后点击 "Run"开始运行。
  1. 运行结束后,我们就可以看到模型生成的输出内容,该内容为基于客服对话内容为客服建议的下一步客服操作,格式与我们期望的要求相符。

从该展示中我们可以看出,优化后的提示词相对于我们初始提供的提示词更加清晰,并且提供了明确的指示,以便AI基础模型正确处理提供的客服通话记录内容。这有助于提供正确的客服操作建议结果,并以我们所需的格式输出。

当提示优化完成后,我们也可以通过创建版本(Create Version)的方式来将该提示词部署到我们的AI应用中,该操作会将当前配置创建一个整体的快照,方便打包部署到新开发的AI应用中进行调用。Amazon Bedrock目前允许存储多个提示词的版本,以便在不同的用户使用场景下之间切换。

以上就是亚马逊云科技上通过Amazon Bedrock提示词优化功能优化提示词,提升模型回复性能效果、无痛生成完美提示词的方案的全部内容。欢迎大家关注小李哥和本系列的下篇,不要错过未来更多国际前沿的AWS云开发/云架构方案。

相关推荐
蹦蹦跳跳真可爱589几秒前
Python----循环神经网络(Transformer ----注意力机制)
人工智能·深度学习·nlp·transformer·循环神经网络
空中湖2 小时前
tensorflow武林志第二卷第九章:玄功九转
人工智能·python·tensorflow
lishaoan772 小时前
使用tensorflow的线性回归的例子(七)
人工智能·tensorflow·线性回归
千宇宙航5 小时前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
onceco6 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
运维开发王义杰6 小时前
金融安全生命线:用AWS EventBridge和CloudTrail构建主动式入侵检测系统
安全·金融·aws
jndingxin8 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
Sweet锦9 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
v先v关v住v获v取9 小时前
焊接机器人结构设计cad【16张】三维图+设计说明书+绛重
科技
hie988949 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab