深度学习项目--基于LSTM的糖尿病预测探究(pytorch实现)

前言

文章目录

1、数据导入和数据预处理

1、数据导入

python 复制代码
import torch  
import torch.nn as nn 
from torch.utils.data import DataLoader, TensorDataset
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from sklearn.preprocessing import StandardScaler 
from sklearn.model_selection import train_test_split
#设置字体
from pylab import mpl
mpl.rcParams["font.sans-serif"] = ["SimHei"]  # 显示中文
plt.rcParams['axes.unicode_minus'] = False		# 显示负号

# 数据不大,用CPU即可
device = 'cpu'

data_df = pd.read_excel('./dia.xls')

data_df.head()

| | 卡号 | 性别 | 年龄 | 高密度脂蛋白胆固醇 | 低密度脂蛋白胆固醇 | 极低密度脂蛋白胆固醇 | 甘油三酯 | 总胆固醇 | 脉搏 | 舒张压 | 高血压史 | 尿素氮 | 尿酸 | 肌酐 | 体重检查结果 | 是否糖尿病 |
| 0 | 18054421 | 0 | 38 | 1.25 | 2.99 | 1.07 | 0.64 | 5.31 | 83 | 83 | 0 | 4.99 | 243.3 | 50 | 1 | 0 |
| 1 | 18054422 | 0 | 31 | 1.15 | 1.99 | 0.84 | 0.50 | 3.98 | 85 | 63 | 0 | 4.72 | 391.0 | 47 | 1 | 0 |
| 2 | 18054423 | 0 | 27 | 1.29 | 2.21 | 0.69 | 0.60 | 4.19 | 73 | 61 | 0 | 5.87 | 325.7 | 51 | 1 | 0 |
| 3 | 18054424 | 0 | 33 | 0.93 | 2.01 | 0.66 | 0.84 | 3.60 | 83 | 60 | 0 | 2.40 | 203.2 | 40 | 2 | 0 |

4 18054425 0 36 1.17 2.83 0.83 0.73 4.83 85 67 0 4.09 236.8 43 0 0

2、数据统计

python 复制代码
data_df.info()
复制代码
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1006 entries, 0 to 1005
Data columns (total 16 columns):
 #   Column      Non-Null Count  Dtype  
---  ------      --------------  -----  
 0   卡号          1006 non-null   int64  
 1   性别          1006 non-null   int64  
 2   年龄          1006 non-null   int64  
 3   高密度脂蛋白胆固醇   1006 non-null   float64
 4   低密度脂蛋白胆固醇   1006 non-null   float64
 5   极低密度脂蛋白胆固醇  1006 non-null   float64
 6   甘油三酯        1006 non-null   float64
 7   总胆固醇        1006 non-null   float64
 8   脉搏          1006 non-null   int64  
 9   舒张压         1006 non-null   int64  
 10  高血压史        1006 non-null   int64  
 11  尿素氮         1006 non-null   float64
 12  尿酸          1006 non-null   float64
 13  肌酐          1006 non-null   int64  
 14  体重检查结果      1006 non-null   int64  
 15  是否糖尿病       1006 non-null   int64  
dtypes: float64(7), int64(9)
memory usage: 125.9 KB
python 复制代码
data_df.describe()

| | 卡号 | 性别 | 年龄 | 高密度脂蛋白胆固醇 | 低密度脂蛋白胆固醇 | 极低密度脂蛋白胆固醇 | 甘油三酯 | 总胆固醇 | 脉搏 | 舒张压 | 高血压史 | 尿素氮 | 尿酸 | 肌酐 | 体重检查结果 | 是否糖尿病 |
| count | 1.006000e+03 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 |
| mean | 1.838279e+07 | 0.598410 | 50.288270 | 1.152201 | 2.707475 | 0.998311 | 1.896720 | 4.857624 | 80.819085 | 76.886680 | 0.173956 | 5.562684 | 339.345427 | 64.106362 | 1.609344 | 0.444334 |
| std | 6.745088e+05 | 0.490464 | 16.921487 | 0.313426 | 0.848070 | 0.715891 | 2.421403 | 1.029973 | 12.542270 | 12.763173 | 0.379260 | 1.646342 | 84.569846 | 29.338437 | 0.772327 | 0.497139 |
| min | 1.805442e+07 | 0.000000 | 20.000000 | 0.420000 | 0.840000 | 0.140000 | 0.350000 | 2.410000 | 41.000000 | 45.000000 | 0.000000 | 2.210000 | 140.800000 | 30.000000 | 0.000000 | 0.000000 |
| 25% | 1.807007e+07 | 0.000000 | 37.250000 | 0.920000 | 2.100000 | 0.680000 | 0.880000 | 4.200000 | 72.000000 | 67.000000 | 0.000000 | 4.450000 | 280.850000 | 51.250000 | 1.000000 | 0.000000 |
| 50% | 1.807036e+07 | 1.000000 | 50.000000 | 1.120000 | 2.680000 | 0.850000 | 1.335000 | 4.785000 | 79.000000 | 76.000000 | 0.000000 | 5.340000 | 333.000000 | 62.000000 | 2.000000 | 0.000000 |
| 75% | 1.809726e+07 | 1.000000 | 60.000000 | 1.320000 | 3.220000 | 1.090000 | 2.087500 | 5.380000 | 88.000000 | 85.000000 | 0.000000 | 6.367500 | 394.000000 | 72.000000 | 2.000000 | 1.000000 |

max 2.026124e+07 1.000000 93.000000 2.500000 7.980000 11.260000 45.840000 12.610000 135.000000 119.000000 1.000000 18.640000 679.000000 799.000000 3.000000 1.000000

3、数据分布分析

python 复制代码
# 缺失值统计
data_df.isnull().sum()
复制代码
卡号            0
性别            0
年龄            0
高密度脂蛋白胆固醇     0
低密度脂蛋白胆固醇     0
极低密度脂蛋白胆固醇    0
甘油三酯          0
总胆固醇          0
脉搏            0
舒张压           0
高血压史          0
尿素氮           0
尿酸            0
肌酐            0
体重检查结果        0
是否糖尿病         0
dtype: int64
python 复制代码
# 数据分布、异常值分析
feature_name = {
    '性别': '性别',
    '年龄': '年龄',
    '高密度脂蛋白胆固醇': '高密度脂蛋白胆固醇',
    '低密度脂蛋白胆固醇': '低密度脂蛋白胆固醇',
    '极低密度脂蛋白胆固醇': '极低密度脂蛋白胆固醇',
    '甘油三酯': '甘油三酯',
    '总胆固醇': '总胆固醇',
    '脉搏': '脉搏',
    '舒张压': '舒张压',
    '高血压史': '高血压史',
    '尿素氮': '尿素氮',
    '肌酐': '肌酐',
    '体重检查结果': '体重检查结果',
    '是否糖尿病': '是否糖尿病'
}

# 子箱图 展示
plt.figure(figsize=(20, 20))

for i, (col, col_name) in enumerate(feature_name.items(), 1):
    plt.subplot(4, 4, i)
    # 绘制子箱图
    sns.boxplot(x=data_df["是否糖尿病"],y=data_df[col])
    # 设置标题
    plt.title(f'{col_name}的纸箱图', fontsize=10)
    plt.ylabel('数值', fontsize=12)
    plt.grid(axis='y', linestyle='--', alpha=0.7)
    
plt.show()


异常值分析(查阅资料后发现):

  1. 总数据较少;
  2. 特征参数受很多因素的影响,故这里假设没有异常值(数据多的时候可以进一步分析)

患糖尿病和不患糖尿病数据分布分析

  • 发现患病和不患病在:年龄、高密度蛋白固醇、低密度蛋白固醇、低密度蛋白固醇、甘油三肪、舒张压、高血压、尿素的相关因素等数据因素有关

4、相关性分析

python 复制代码
plt.figure(figsize=(15, 10))
sns.heatmap(data_df.corr(), annot=True, fmt=".2f")
plt.show()


高密度蛋白胆固醇存在负相关,故删除该特征

2、数据标准化和划分

时间步长为1

python 复制代码
# 特征选择
x = data_df.drop(['卡号', '高密度脂蛋白胆固醇', '是否糖尿病'], axis=1)
y = data_df['是否糖尿病']

# 数据标准化(数据之间差别大), 二分类问题,y不需要做标准化
sc = StandardScaler()
x = sc.fit_transform(x)

# 转换为tensors数据
x = torch.tensor(np.array(x), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)

# 数据划分, 训练:测试 = 8: 2
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2 ,random_state=42)

# 维度设置, [batch_size, seq, features], 当然不设置也没事,因为这样默认** 设置 seq 为 1**
x_train = x_train.unsqueeze(1)
x_test = x_test.unsqueeze(1)

# 查看维度
x_train.shape, y_train.shape
复制代码
(torch.Size([804, 1, 13]), torch.Size([804]))
python 复制代码
# 构建数据集
batch_size = 16

train_dl = DataLoader(TensorDataset(x_train, y_train),
                      batch_size=batch_size,
                      shuffle=True
                      )

test_dl = DataLoader(TensorDataset(x_test, y_test),
                     batch_size=batch_size,
                     shuffle=False
                     )
python 复制代码
for X, Y in train_dl:
    print(X.shape)
    print(Y.shape)
    break 
复制代码
torch.Size([16, 1, 13])
torch.Size([16])

3、创建模型

python 复制代码
class Model_lstm(nn.Module):
    def __init__(self):
        super().__init__()
        
        '''
        模型结构:
            1、两层lstm
            2、一层linear 
        '''
        
        self.lstm1 = nn.LSTM(input_size=13, hidden_size=200,
                             num_layers=1, batch_first=True)
        self.lstm2 = nn.LSTM(input_size=200, hidden_size=200,
                             num_layers=1, batch_first=True)
        # 展开,分类
        self.lc1 = nn.Linear(200, 2)
        
    def forward(self, x):
        out, hidden1 = self.lstm1(x)
        out, _ = self.lstm2(out, hidden1)  # 将上一个层的最后隐藏层状态,作为lstm2的这一层的隐藏层状态
        out = self.lc1(out)
        return out
    
model = Model_lstm().to(device)

model
复制代码
Model_lstm(
  (lstm1): LSTM(13, 200, batch_first=True)
  (lstm2): LSTM(200, 200, batch_first=True)
  (lc1): Linear(in_features=200, out_features=2, bias=True)
)
python 复制代码
model(torch.randn(8, 1, 13)).shape
复制代码
torch.Size([8, 1, 2])

4、模型训练

1、创建训练集

python 复制代码
def train(dataloader, model, loss_fn, opt):
    size = len(dataloader.dataset)
    num_batch = len(dataloader)
    
    train_acc, train_loss = 0.0, 0.0 
    
    for X, y in dataloader:
        X, y = X.to(device), y.to(device)
        
        pred = model(X).view(-1, 2)
        loss = loss_fn(pred, y)
        
        # 梯度设置
        opt.zero_grad()
        loss.backward()
        opt.step()
        
        train_loss += loss.item()
        # 求最大概率配对
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        
    train_acc /= size 
    train_loss /= num_batch
    
    return train_acc, train_loss 
        

2、创建测试集函数

python 复制代码
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batch = len(dataloader)
    
    test_acc, test_loss = 0.0, 0.0 
    
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            
            pred = model(X).view(-1, 2)
            loss = loss_fn(pred, y)
            
            test_loss += loss.item()
            # 求最大概率配对
            test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
            
    test_acc /= size 
    test_loss /= num_batch 
    
    return test_acc, test_loss

3、设置超参数

python 复制代码
learn_rate = 1e-4
opt = torch.optim.Adam(model.parameters(), lr=learn_rate)
loss_fn = nn.CrossEntropyLoss()

5、模型训练

python 复制代码
epochs = 50

train_acc, train_loss, test_acc, test_loss = [], [], [], []

for i in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 输出
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}')
    print(template.format(i + 1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
    
print("---------------Done---------------")
复制代码
Epoch: 1, Train_acc:58.5%, Train_loss:0.677, Test_acc:75.7%, Test_loss:0.655
Epoch: 2, Train_acc:71.0%, Train_loss:0.643, Test_acc:77.2%, Test_loss:0.606
Epoch: 3, Train_acc:75.2%, Train_loss:0.590, Test_acc:79.7%, Test_loss:0.533
Epoch: 4, Train_acc:76.9%, Train_loss:0.524, Test_acc:80.2%, Test_loss:0.469
Epoch: 5, Train_acc:77.5%, Train_loss:0.481, Test_acc:79.7%, Test_loss:0.436
Epoch: 6, Train_acc:78.4%, Train_loss:0.470, Test_acc:79.7%, Test_loss:0.419
Epoch: 7, Train_acc:78.6%, Train_loss:0.452, Test_acc:80.7%, Test_loss:0.412
Epoch: 8, Train_acc:78.5%, Train_loss:0.449, Test_acc:80.7%, Test_loss:0.406
Epoch: 9, Train_acc:78.7%, Train_loss:0.444, Test_acc:80.7%, Test_loss:0.400
Epoch:10, Train_acc:79.0%, Train_loss:0.435, Test_acc:81.2%, Test_loss:0.395
Epoch:11, Train_acc:78.4%, Train_loss:0.428, Test_acc:81.2%, Test_loss:0.391
Epoch:12, Train_acc:79.1%, Train_loss:0.428, Test_acc:81.2%, Test_loss:0.388
Epoch:13, Train_acc:79.0%, Train_loss:0.421, Test_acc:80.7%, Test_loss:0.385
Epoch:14, Train_acc:79.2%, Train_loss:0.415, Test_acc:81.7%, Test_loss:0.382
Epoch:15, Train_acc:79.1%, Train_loss:0.415, Test_acc:81.7%, Test_loss:0.379
Epoch:16, Train_acc:79.7%, Train_loss:0.422, Test_acc:81.7%, Test_loss:0.377
Epoch:17, Train_acc:79.5%, Train_loss:0.410, Test_acc:81.7%, Test_loss:0.375
Epoch:18, Train_acc:79.2%, Train_loss:0.406, Test_acc:81.7%, Test_loss:0.374
Epoch:19, Train_acc:80.3%, Train_loss:0.407, Test_acc:82.2%, Test_loss:0.372
Epoch:20, Train_acc:80.1%, Train_loss:0.409, Test_acc:81.2%, Test_loss:0.370
Epoch:21, Train_acc:80.2%, Train_loss:0.397, Test_acc:80.7%, Test_loss:0.368
Epoch:22, Train_acc:81.0%, Train_loss:0.399, Test_acc:81.7%, Test_loss:0.367
Epoch:23, Train_acc:80.7%, Train_loss:0.396, Test_acc:81.2%, Test_loss:0.365
Epoch:24, Train_acc:81.0%, Train_loss:0.401, Test_acc:81.7%, Test_loss:0.363
Epoch:25, Train_acc:81.1%, Train_loss:0.392, Test_acc:82.2%, Test_loss:0.363
Epoch:26, Train_acc:81.2%, Train_loss:0.385, Test_acc:82.2%, Test_loss:0.362
Epoch:27, Train_acc:80.6%, Train_loss:0.392, Test_acc:82.2%, Test_loss:0.361
Epoch:28, Train_acc:80.5%, Train_loss:0.382, Test_acc:81.2%, Test_loss:0.358
Epoch:29, Train_acc:81.1%, Train_loss:0.386, Test_acc:81.7%, Test_loss:0.358
Epoch:30, Train_acc:80.7%, Train_loss:0.380, Test_acc:82.2%, Test_loss:0.358
Epoch:31, Train_acc:81.5%, Train_loss:0.378, Test_acc:81.7%, Test_loss:0.357
Epoch:32, Train_acc:80.6%, Train_loss:0.373, Test_acc:81.2%, Test_loss:0.356
Epoch:33, Train_acc:81.3%, Train_loss:0.373, Test_acc:81.7%, Test_loss:0.357
Epoch:34, Train_acc:80.8%, Train_loss:0.378, Test_acc:81.7%, Test_loss:0.354
Epoch:35, Train_acc:81.5%, Train_loss:0.372, Test_acc:81.2%, Test_loss:0.355
Epoch:36, Train_acc:81.5%, Train_loss:0.368, Test_acc:81.2%, Test_loss:0.354
Epoch:37, Train_acc:81.2%, Train_loss:0.368, Test_acc:80.7%, Test_loss:0.354
Epoch:38, Train_acc:81.2%, Train_loss:0.369, Test_acc:81.2%, Test_loss:0.353
Epoch:39, Train_acc:81.7%, Train_loss:0.365, Test_acc:81.2%, Test_loss:0.354
Epoch:40, Train_acc:81.5%, Train_loss:0.363, Test_acc:81.2%, Test_loss:0.355
Epoch:41, Train_acc:81.7%, Train_loss:0.358, Test_acc:81.2%, Test_loss:0.354
Epoch:42, Train_acc:81.7%, Train_loss:0.355, Test_acc:81.2%, Test_loss:0.353
Epoch:43, Train_acc:81.3%, Train_loss:0.353, Test_acc:80.7%, Test_loss:0.354
Epoch:44, Train_acc:82.0%, Train_loss:0.355, Test_acc:80.7%, Test_loss:0.354
Epoch:45, Train_acc:81.7%, Train_loss:0.353, Test_acc:79.7%, Test_loss:0.354
Epoch:46, Train_acc:82.1%, Train_loss:0.354, Test_acc:80.2%, Test_loss:0.354
Epoch:47, Train_acc:82.0%, Train_loss:0.349, Test_acc:80.2%, Test_loss:0.356
Epoch:48, Train_acc:82.1%, Train_loss:0.350, Test_acc:80.2%, Test_loss:0.356
Epoch:49, Train_acc:82.0%, Train_loss:0.345, Test_acc:80.7%, Test_loss:0.355
Epoch:50, Train_acc:81.8%, Train_loss:0.344, Test_acc:80.7%, Test_loss:0.355
---------------Done---------------

6、模型结果展示

python 复制代码
from datetime import datetime
current_time = datetime.now()

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training Accuracy')
plt.xlabel(current_time) 

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training Loss')
plt.show()


7、预测

python 复制代码
test_x = x_test[0].reshape(1, 1, 13)

pred = model(test_x.to(device)).reshape(-1, 2)
res = pred.argmax(1).item()

print(f"预测结果: {res}, (1: 患病; 0: 不患病)")
复制代码
预测结果: 1, (1: 患病; 0: 不患病)
相关推荐
o(╥﹏╥)几秒前
Learn how Gen AI 学习笔记
人工智能·笔记·学习
Coder_Boy_几秒前
基于SpringAI的在线考试系统-教学管理与用户管理模块联合回归测试文档
java·前端·数据库·人工智能·spring boot
可能是阿伦3 分钟前
ZenFlow AI:一个“无广告、免登录、自由度高”的 Todo + 番茄钟 + 生产力分析工具
人工智能·工具
方见华Richard3 分钟前
递归对抗拓扑学:认知冲突的纤维丛结构V1.0
人工智能·交互·学习方法·原型模式·空间计算
Caesar Zou5 分钟前
torchcodec is not available问题
人工智能·pytorch·深度学习·神经网络
翱翔的苍鹰5 分钟前
循环神经网络-RNN和简单的例子
人工智能·pytorch·rnn·深度学习·神经网络·transformer·word2vec
Lun3866buzha8 分钟前
YOLO11-C3k2-FMB改进 _ 深蹲动作识别与分类_1
人工智能·分类·数据挖掘
edisao9 分钟前
【开源】轻量级 LLM 文本质检工具:精准识别核心概念缺失,支持动态别名 + 反馈闭环
大数据·开发语言·人工智能·经验分享·gpt·架构·开源
云卓SKYDROID10 分钟前
无人机电机与电子调速器模块详解
人工智能·无人机·高科技·云卓科技·技术解析、
砚边数影12 分钟前
DL4J框架入门(三):基础配置,计算后端(CPU/GPU)选型与优化
java·数据库·人工智能·ai·金仓数据库