Tensor 基本操作5 device 管理,使用 GPU 设备 | PyTorch 深度学习实战

前一篇文章,Tensor 基本操作4 理解 indexing,加减乘除和 broadcasting 运算 | PyTorch 深度学习实战

本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started

Tensor 基本使用

  • 检查设备
  • [创建 tensor 时声明设备](#创建 tensor 时声明设备)
  • 更改默认设备
  • [创建 tensor 后移动 tensor.to](#创建 tensor 后移动 tensor.to)
  • 注意事项
    • [1. 运算的发生位置](#1. 运算的发生位置)
    • [2. 当两个 tensor 进行运算时,需要在同一个设备上](#2. 当两个 tensor 进行运算时,需要在同一个设备上)

检查设备

  • 默认为 CPU,根据是否有 GPU 设定 device。

    device = (torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu'))

  • 检查默认设备

    device = torch.get_default_device()

创建 tensor 时声明设备

复制代码
    # 声明为 CPU 设备
    device_cpu = torch.device('cpu')
    points_cpu = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]], device=device_cpu)

更改默认设备

将默认设备,设置为 GPU。

复制代码
device_gpu = torch.device('cuda')
torch.set_default_device(device_gpu) 
points_default = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]]) # 此时,points_default  被定义到 GPU 上

创建 tensor 后移动 tensor.to

将一个 tensor 移动到指定设备。

复制代码
    device_gpu = torch.device('cuda')
    points2 = points.to(device_gpu)  # 将 Tensor 复制到 GPU
    print(points2)

注意事项

1. 运算的发生位置

复制代码
    device_gpu = torch.device('cuda')
    points2 = points.to(device_gpu)  # 将 Tensor 复制到 GPU
    points3 = points2 * 2   # points3 还是在 GPU 上
    points4 = points2 + 2  # points4 还是在 GPU 上

但是,打印 points3 或 points4 时,将会复制该值到 CPU 上输出。

2. 当两个 tensor 进行运算时,需要在同一个设备上

复制代码
  File "C:\devel\Python\Python311\Lib\site-packages\torch\utils\_device.py", line 79, in __torch_function__
    return func(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!
相关推荐
Serverless 社区24 分钟前
阿里云函数计算 AgentRun 全新发布,构筑智能体时代的基础设施
人工智能·阿里云·云原生·serverless·云计算
IT_陈寒37 分钟前
Python开发者必看!10个高效数据处理技巧让你的Pandas代码提速300%
前端·人工智能·后端
新智元1 小时前
全球 AI 视频大战升级!「中国版 Sora」Vidu Q2 参考生月底发布,能力对标 Sora 2
人工智能·openai
新智元1 小时前
刚刚,Figure 03 惊天登场!四年狂造 10 万台,人类保姆集体失业
人工智能·openai
万猫学社1 小时前
我们为什么需要Agent?
人工智能
CoovallyAIHub2 小时前
告别等待!十条高效PyTorch数据增强流水线,让你的GPU不再"饥饿"
深度学习·算法·计算机视觉
共绩算力2 小时前
OpenAI Whisper 语音识别模型:技术与应用全面分析
人工智能·whisper·语音识别·共绩算力
工藤学编程2 小时前
零基础学AI大模型之Stream流式输出实战
人工智能
不良人龍木木2 小时前
机器学习-常用库
人工智能·机器学习