pytorch基本运算-导数和f-string

引言

在前序对机器学习的探究过程中,我们已经深刻体会到人工智能到处都有微分求导运算,相关文章链接包括且不限于:
BP神经网络
逻辑回归

对于pytorch张量,求导运算必不可少,所以本次就专门来学习一下。

f-string的用法

f-string是python语言里面一种简洁且强大的字符串格式化方法,对内容的引用和输出较为高效。

确实也可以不适用f-string,但刚好学习到导数计算比较简单,所以就一起学习一下。

f-string以"f"或"F"开头,用单引号"'"和"'"引用自由添加的字符串,如果要引用变量,就用大括号"{}"包起来。

常规输出

常规输出格式:f+'输出内容+{"引用内容"}'。示例代码:

python 复制代码
h = 0.1234567
print(f'h当前值:{h}')

这个代码的运行效果:h当前值:0.1234567

控制小数位数输出

常规输出格式:f+'输出内容+{"引用内容:.xf"}'。

"引用内容:.xf"的意思是,对浮点数f,保留x位小数。示例代码:

python 复制代码
h = 0.1234567
print(f'h当前值:{h}')
print(f'h当前值(1位小数):{h:.1f}')
print(f'h当前值(3位小数):{h:.3f}')
print(f'h当前值(5位小数):{h:.5f}')
print(f'h当前值(8位小数):{h:.8f}')
print(f'h当前值(10位小数):{h:.10f}')

由图2可见,h的当前值按照x的设置量调整了小数位数。

如果想把代码写得紧凑,比如写成一个for循环,上述代码可优化为:

python 复制代码
h = 0.1234567
print(f'h当前值:{h}')
print(f'h当前值(1位小数):{h:.1f}')
print(f'h当前值(3位小数):{h:.3f}')
print(f'h当前值(5位小数):{h:.5f}')
print(f'h当前值(8位小数):{h:.8f}')
print(f'h当前值(10位小数):{h:.10f}')
for i in range(10):
    print(f'h当前值保留{i}位小数:{h:.{i}f}')

需要注意的是,引用的变量应该用大括号"{}"包起来。

代码运行效果为:

pytorch导数

计算导数的定义式为:
f ′ ( x ) = lim ⁡ x → 0 f ( x + h ) − f ( x ) h f^{'}(x)=\lim_{x \to 0}\frac{f(x+h)-f(x)}{h} f′(x)=x→0limhf(x+h)−f(x)

基于此,继续优化代码:

python 复制代码
h = 0.1234567
print(f'h当前值:{h}')
print(f'h当前值(1位小数):{h:.1f}')
print(f'h当前值(3位小数):{h:.3f}')
print(f'h当前值(5位小数):{h:.5f}')
print(f'h当前值(8位小数):{h:.8f}')
print(f'h当前值(10位小数):{h:.10f}')
for i in range(5):
    print(f'h当前值保留{i}位小数:{h:.{i}f}')

# 定义原函数
def f(x):
    return 3*x**2-3*x

# 定义求导函数
def numerical_lim(f, x, h):
    return (f(x + h) - f(x)) / h

# 修改偏移量
h=0.1
for i in range(10):
    print(f'h={h:.5f}.时的函数值为{f(h):.5f},导数值为{numerical_lim(f,1,h):.8f}')
    h*=0.1

这里先定义了原函数:

def f(x):

return 3x**2-3x

然后定义了原函数的导数:

def numerical_lim(f, x, h):

return (f(x + h) - f(x)) / h

最后通过改变自变量偏移量的形式,不断逼近导数的真实值:

h=0.1 for i in range(10):

print(f'h={h:.5f}.时的函数值为{f(h):.5f},导数值为{numerical_lim(f,1,h):.8f}')

h*=0.1

代码运行后的效果为:

可见,随着偏移量的减小,在x=1位置处,函数f(x)的导数值不断趋向准确值3。

细节说明

由于小数位数的限制,如果继续减小h到h=0.000 000 000 000 000 100,函数f(x)的值和导数值都会变成0。

对此有两种解释:

  1. x此时本身是无穷小量,在f(x)=3x**2-3x中,极小的x计算了平方后,已经远远小于x本身,函数f(x)的值和导数值都是无穷小量,计算效果输出0。
  2. Python 的 float 类型使用 IEEE 754 双精度 64 位浮点数,提供约15-17位十进制有效数字,一旦超出就可能不准。h=0.000000000000000100的1出现在第16位,此时的计算结果就会出现不准。

可运行此时的代码测试:

python 复制代码
h = 0.1234567
print(f'h当前值:{h}')
print(f'h当前值(1位小数):{h:.1f}')
print(f'h当前值(3位小数):{h:.3f}')
print(f'h当前值(5位小数):{h:.5f}')
print(f'h当前值(8位小数):{h:.8f}')
print(f'h当前值(10位小数):{h:.10f}')
for i in range(5):
    print(f'h当前值保留{i}位小数:{h:.{i}f}')

# 定义原函数
def f(x):
    return 3*x**2-3*x

# 定义求导函数
def numerical_lim(f, x, h):
    return (f(x + h) - f(x)) / h

# 修改偏移量
h=0.1
for i in range(20):
    print(f'i={i},h={h:.18f}.时的函数值为{f(h):.18f},导数值为{numerical_lim(f,1,h):.18f}')
    h*=0.1

总结

学习了pytorch导数运算和相关的f-string使用方法。

相关推荐
___波子 Pro Max.13 分钟前
GitHub Actions配置python flake8和black
python·black·flake8
kngines15 分钟前
【字节跳动】数据挖掘面试题0007:Kmeans原理,何时停止迭代
人工智能·数据挖掘·kmeans
Kali_0718 分钟前
使用 Mathematical_Expression 从零开始实现数学题目的作答小游戏【可复制代码】
java·人工智能·免费
贾全24 分钟前
第十章:HIL-SERL 真实机器人训练实战
人工智能·深度学习·算法·机器学习·机器人
每日摸鱼大王30 分钟前
互联网摸鱼日报(2025-07-01)
人工智能
GIS小天39 分钟前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年7月4日第128弹
人工智能·算法·机器学习·彩票
我是小哪吒2.01 小时前
书籍推荐-《对抗机器学习:攻击面、防御机制与人工智能中的学习理论》
人工智能·深度学习·学习·机器学习·ai·语言模型·大模型
慕婉03071 小时前
深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
人工智能·深度学习·机器学习
阿蒙Amon1 小时前
【Python小工具】使用 OpenCV 获取视频时长的详细指南
python·opencv·音视频
荔枝吻2 小时前
【AI总结】Git vs GitHub vs GitLab:深度解析三者联系与核心区别
人工智能·git·github