自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合

一、导入必要的库

python 复制代码
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

二、加载自定义数据集

python 复制代码
# 创建自定义数据集
# 假设我们有一个简单的线性关系 y = 2x + 1,并添加一些随机噪声
np.random.seed(42)  # 为了结果的可重复性设置随机种子
X = 2 * np.random.rand(100, 1)  # 100个样本,每个样本1个特征(随机生成在0到2之间的数)
y = 4 + 3 * X + np.random.randn(100, 1)  # 目标变量,添加了一些随机噪声

三、划分数据集

python 复制代码
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

四、训练线性回归模型

python 复制代码
lin_reg = LinearRegression()
lin_reg.fit(X_train, y_train)

五、预测并评估模型

python 复制代码
# 进行预测
y_pred = lin_reg.predict(X_test)

# 评估模型
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

六、图形展示

python 复制代码
plt.scatter(X, y, color='blue', label='point')
plt.plot(X_test, y_pred, color='red', label='line')
plt.xlabel('X')
plt.ylabel('y')
plt.title('show')
plt.legend()
plt.show()

七、完整代码即结果演示

python 复制代码
import numpy as np
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

# 创建自定义数据集
# 假设我们有一个简单的线性关系 y = 2x + 1,并添加一些随机噪声
np.random.seed(42)  # 为了结果的可重复性设置随机种子
X = 2 * np.random.rand(100, 1)  # 100个样本,每个样本1个特征(随机生成在0到2之间的数)
y = 4 + 3 * X + np.random.randn(100, 1)  # 目标变量,添加了一些随机噪声

# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练线性回归模型
lin_reg = LinearRegression()
lin_reg.fit(X_train, y_train)

# 进行预测
y_pred = lin_reg.predict(X_test)

# 评估模型
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f"均方误差: {mse}")

plt.scatter(X, y, color='blue', label='point')
plt.plot(X_test, y_pred, color='red', label='line')
plt.xlabel('X')
plt.ylabel('y')
plt.title('show')
plt.legend()
plt.show()

相关推荐
阿加犀智能6 分钟前
高通手机跑AI系列之——实时头发识别
python·ai编程
北京_宏哥23 分钟前
🔥Python零基础从入门到精通详细教程10 - python数据类型之数字(Number)-整型(int)详解
前端·python·面试
斜月43 分钟前
Jupyter Notebook 与 Pandas 绘图实践
人工智能·python
cliffordl1 小时前
wxPython 实践(五)高级控件
python
__風__1 小时前
从本地 Docker 部署的 Dify 中导出知识库内容(1.6版本亲测有效)
人工智能·python·mysql·语言模型
fsnine1 小时前
网络爬虫(python)入门
开发语言·爬虫·python
WilliamHu.1 小时前
金融分类提示词演示
开发语言·python·大模型·prompt
Shun_Tianyou2 小时前
Python Day17 面向对象 及例题分析
开发语言·数据结构·python·算法
a cool fish(无名)2 小时前
8.1-使用向量存储值列表
人工智能·python·算法
Dreamsi_zh2 小时前
Python爬虫07_Requests爬取图片
开发语言·爬虫·python