自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合

一、导入必要的库

python 复制代码
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

二、加载自定义数据集

python 复制代码
# 创建自定义数据集
# 假设我们有一个简单的线性关系 y = 2x + 1,并添加一些随机噪声
np.random.seed(42)  # 为了结果的可重复性设置随机种子
X = 2 * np.random.rand(100, 1)  # 100个样本,每个样本1个特征(随机生成在0到2之间的数)
y = 4 + 3 * X + np.random.randn(100, 1)  # 目标变量,添加了一些随机噪声

三、划分数据集

python 复制代码
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

四、训练线性回归模型

python 复制代码
lin_reg = LinearRegression()
lin_reg.fit(X_train, y_train)

五、预测并评估模型

python 复制代码
# 进行预测
y_pred = lin_reg.predict(X_test)

# 评估模型
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

六、图形展示

python 复制代码
plt.scatter(X, y, color='blue', label='point')
plt.plot(X_test, y_pred, color='red', label='line')
plt.xlabel('X')
plt.ylabel('y')
plt.title('show')
plt.legend()
plt.show()

七、完整代码即结果演示

python 复制代码
import numpy as np
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

# 创建自定义数据集
# 假设我们有一个简单的线性关系 y = 2x + 1,并添加一些随机噪声
np.random.seed(42)  # 为了结果的可重复性设置随机种子
X = 2 * np.random.rand(100, 1)  # 100个样本,每个样本1个特征(随机生成在0到2之间的数)
y = 4 + 3 * X + np.random.randn(100, 1)  # 目标变量,添加了一些随机噪声

# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练线性回归模型
lin_reg = LinearRegression()
lin_reg.fit(X_train, y_train)

# 进行预测
y_pred = lin_reg.predict(X_test)

# 评估模型
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f"均方误差: {mse}")

plt.scatter(X, y, color='blue', label='point')
plt.plot(X_test, y_pred, color='red', label='line')
plt.xlabel('X')
plt.ylabel('y')
plt.title('show')
plt.legend()
plt.show()

相关推荐
胖达不服输10 分钟前
「日拱一码」020 机器学习——数据处理
人工智能·python·机器学习·数据处理
吴佳浩17 分钟前
Python入门指南-番外-LLM-Fingerprint(大语言模型指纹):从技术视角看AI开源生态的边界与挑战
python·llm·mcp
吴佳浩1 小时前
Python入门指南-AI模型相似性检测方法:技术原理与实现
人工智能·python·llm
叶 落1 小时前
计算阶梯电费
python·python 基础·python 入门
Python大数据分析@2 小时前
Origin、MATLAB、Python 用于科研作图,哪个最好?
开发语言·python·matlab
编程零零七2 小时前
Python巩固训练——第一天练习题
开发语言·python·python基础·python学习·python练习题
Zonda要好好学习2 小时前
Python入门Day4
java·网络·python
小龙在山东3 小时前
Python 包管理工具 uv
windows·python·uv
weixin_307779134 小时前
批量OCR的GitHub项目
python·github·ocr
孤狼warrior4 小时前
灰色预测模型
人工智能·python·算法·数学建模