使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测。

1、导入需要的包

python 复制代码
# 导入鸢尾花数据集
from sklearn.datasets import load_iris
# 数据可视化包
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.neighbors import KNeighborsClassifier

2、获取鸢尾花数据集

python 复制代码
iris = load_iris()

3、数据可视化

python 复制代码
iris_data1 = pd.DataFrame(data=iris['data'], columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])

4、填充目标值

python 复制代码
iris_data1['target'] = iris['target']

5、 数据集的划分

python 复制代码
x_train, x_test, y_train, y_test = train_test_split(iris['data'], iris['target'], test_size=0.2, random_state=42)

6、特征工程 - 特征预处理

python 复制代码
transfer = StandardScaler()
ret_train_data = transfer.fit_transform(x_train)
ret_test_data = transfer.fit_transform(x_test)

7、构建KNN并实例化

python 复制代码
n_neighbors_num = 5
knn_model = KNeighborsClassifier(n_neighbors=n_neighbors_num)
# 7.2 训练模型 输入训练集和训练集标签
knn_model.fit(ret_train_data, y_train)

8、 评估模型

python 复制代码
y_pre = knn_model.predict(ret_test_data)
print("预测结果:", y_pre)
print("真实值:", y_test)
print("预测值和真实值对比:\n", y_pre == y_test)
# 8.2 准确率计算,注意如果是归一化后的数据就得用归一化后的数据进行预测计算准确率,不然效果很差
score = knn_model.score(ret_test_data, y_test)
print("准确率:", score)
相关推荐
AI模块工坊12 分钟前
CVPR 即插即用 | PConv:重新定义高效卷积,一个让模型“跑”得更快、更省的新范式
人工智能·深度学习·计算机视觉·transformer
lzjava202442 分钟前
Spring AI加DeepSeek实现一个Prompt聊天机器人
人工智能·spring·prompt
fanstuck2 小时前
AI辅助数学建模有哪些优势?
人工智能·数学建模·语言模型·aigc
一只安2 小时前
从零开发AI(不依赖任何模型)
人工智能·python
11年老程序猿在线搬砖3 小时前
如何搭建自己的量化交易平台
大数据·人工智能·python·自动交易·量化交易系统
Elastic 中国社区官方博客3 小时前
Elasticsearch 开放推理 API 增加了对 Google 的 Gemini 模型的支持
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·googlecloud
周杰伦_Jay3 小时前
【实战|旅游知识问答RAG系统全链路解析】从配置到落地(附真实日志数据)
大数据·人工智能·分布式·机器学习·架构·旅游·1024程序员节
架构技术专栏3 小时前
大模型安全:从对齐问题到对抗性攻击的深度分析
人工智能
麻雀无能为力3 小时前
深度学习计算
人工智能·深度学习
周杰伦_Jay4 小时前
【向量检索与RAG全流程解析】HNSW原理、实践及阿里云灵积DashScope嵌入
人工智能·阿里云·数据挖掘·云计算·database·1024程序员节