使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测。

1、导入需要的包

python 复制代码
# 导入鸢尾花数据集
from sklearn.datasets import load_iris
# 数据可视化包
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.neighbors import KNeighborsClassifier

2、获取鸢尾花数据集

python 复制代码
iris = load_iris()

3、数据可视化

python 复制代码
iris_data1 = pd.DataFrame(data=iris['data'], columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])

4、填充目标值

python 复制代码
iris_data1['target'] = iris['target']

5、 数据集的划分

python 复制代码
x_train, x_test, y_train, y_test = train_test_split(iris['data'], iris['target'], test_size=0.2, random_state=42)

6、特征工程 - 特征预处理

python 复制代码
transfer = StandardScaler()
ret_train_data = transfer.fit_transform(x_train)
ret_test_data = transfer.fit_transform(x_test)

7、构建KNN并实例化

python 复制代码
n_neighbors_num = 5
knn_model = KNeighborsClassifier(n_neighbors=n_neighbors_num)
# 7.2 训练模型 输入训练集和训练集标签
knn_model.fit(ret_train_data, y_train)

8、 评估模型

python 复制代码
y_pre = knn_model.predict(ret_test_data)
print("预测结果:", y_pre)
print("真实值:", y_test)
print("预测值和真实值对比:\n", y_pre == y_test)
# 8.2 准确率计算,注意如果是归一化后的数据就得用归一化后的数据进行预测计算准确率,不然效果很差
score = knn_model.score(ret_test_data, y_test)
print("准确率:", score)
相关推荐
Σίσυφος190020 分钟前
PCL 法向量估计-PCA邻域点(经典 kNN 协方差)的协方差矩阵
人工智能·线性代数·矩阵
小鸡吃米…35 分钟前
机器学习的商业化变现
人工智能·机器学习
sali-tec37 分钟前
C# 基于OpenCv的视觉工作流-章22-Harris角点
图像处理·人工智能·opencv·算法·计算机视觉
2的n次方_39 分钟前
ops-math 极限精度优化:INT8/INT4 基础运算的底层指令集映射与核函数复用
人工智能
AI袋鼠帝41 分钟前
Claude4.5+Gemini3 接管电脑桌面,这回是真无敌了..
人工智能·windows·aigc
Lun3866buzha1 小时前
农业害虫检测_YOLO11-C3k2-EMSC模型实现与分类识别_1
人工智能·分类·数据挖掘
方见华Richard1 小时前
世毫九量子原住民教育理念全书
人工智能·经验分享·交互·原型模式·空间计算
忆~遂愿1 小时前
GE 引擎进阶:依赖图的原子性管理与异构算子协作调度
java·开发语言·人工智能
凯子坚持 c1 小时前
CANN-LLM:基于昇腾 CANN 的高性能、全功能 LLM 推理引擎
人工智能·安全
学电子她就能回来吗1 小时前
深度学习速成:损失函数与反向传播
人工智能·深度学习·学习·计算机视觉·github