使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测。

1、导入需要的包

python 复制代码
# 导入鸢尾花数据集
from sklearn.datasets import load_iris
# 数据可视化包
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.neighbors import KNeighborsClassifier

2、获取鸢尾花数据集

python 复制代码
iris = load_iris()

3、数据可视化

python 复制代码
iris_data1 = pd.DataFrame(data=iris['data'], columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])

4、填充目标值

python 复制代码
iris_data1['target'] = iris['target']

5、 数据集的划分

python 复制代码
x_train, x_test, y_train, y_test = train_test_split(iris['data'], iris['target'], test_size=0.2, random_state=42)

6、特征工程 - 特征预处理

python 复制代码
transfer = StandardScaler()
ret_train_data = transfer.fit_transform(x_train)
ret_test_data = transfer.fit_transform(x_test)

7、构建KNN并实例化

python 复制代码
n_neighbors_num = 5
knn_model = KNeighborsClassifier(n_neighbors=n_neighbors_num)
# 7.2 训练模型 输入训练集和训练集标签
knn_model.fit(ret_train_data, y_train)

8、 评估模型

python 复制代码
y_pre = knn_model.predict(ret_test_data)
print("预测结果:", y_pre)
print("真实值:", y_test)
print("预测值和真实值对比:\n", y_pre == y_test)
# 8.2 准确率计算,注意如果是归一化后的数据就得用归一化后的数据进行预测计算准确率,不然效果很差
score = knn_model.score(ret_test_data, y_test)
print("准确率:", score)
相关推荐
点云SLAM2 分钟前
Eigen 中矩阵的拼接(Concatenation)与 分块(Block Access)操作使用详解和示例演示
人工智能·线性代数·算法·矩阵·eigen数学工具库·矩阵分块操作·矩阵拼接操作
木枷1 小时前
NAS-Bench-101: Towards Reproducible Neural Architecture Search
人工智能·物联网
算法_小学生1 小时前
支持向量机(SVM)完整解析:原理 + 推导 + 核方法 + 实战
算法·机器学习·支持向量机
BAOYUCompany2 小时前
暴雨服务器更懂人工智能+
运维·服务器·人工智能
飞哥数智坊2 小时前
Coze实战第17讲:工资条自动拆分+一对一邮件发送
人工智能·coze
cwn_2 小时前
自然语言处理NLP (1)
人工智能·深度学习·机器学习·自然语言处理
点云SLAM2 小时前
PyTorch中flatten()函数详解以及与view()和 reshape()的对比和实战代码示例
人工智能·pytorch·python·计算机视觉·3d深度学习·张量flatten操作·张量数据结构
智海观潮2 小时前
Unity Catalog与Apache Iceberg如何重塑Data+AI时代的企业数据架构
大数据·人工智能·ai·iceberg·catalog
爱分享的飘哥2 小时前
第三篇:VAE架构详解与PyTorch实现:从零构建AI的“视觉压缩引擎”
人工智能·pytorch·python·aigc·教程·生成模型·代码实战
算法_小学生2 小时前
逻辑回归(Logistic Regression)详解:从原理到实战一站式掌握
算法·机器学习·逻辑回归