DBO朴素贝叶斯分类预测matlab代码

蜣螂优化算法(Dung Beetle Optimizer,简称 DBO)是于 2022 年末提出的一种新型群智能优化算法。该算法的灵感主要来源于蜣螂的滚球、跳舞、觅食、偷窃以及繁殖等行为。

此次所使用的数据为 Excel 分类数据集数据。数据集按照 8:1:1 的比例,被划分为了训练集、验证集和测试集三个部分。

在代码结构方面,采用了模块化的设计。依据功能模块,将代码清晰地划分成了数据准备、参数设置、算法处理以及结果展示等几个部分。这样的划分方式显著提升了代码的可读性与可维护性,便于后续的理解与修改。

数据处理流程清晰且规范。首先对数据进行了标准化处理,具体运用了 Zscore 标准化方法。随后,将数据科学地划分为训练集、验证集和测试集,这一系列操作有效地保障了模型训练的准确性与可靠性,为后续的模型评估奠定了坚实基础。

在模型评估环节,代码中运用了十折交叉验证等科学的评估方法,对模型的性能进行了全面且深入的评估。不仅精确计算了训练集、验证集和测试集的准确率,还输出了十折验证准确率以及运行时长等关键信息。此外,为了更直观地展示模型的分类效果,通过绘制分类情况图和混淆矩阵,将模型的分类情况以可视化的形式呈现出来,方便使用者更加直观地了解模型的性能以及分类结果。

关于结果可视化部分,通过精心绘制 DBO 寻优过程收敛曲线、分类情况图以及混淆矩阵,将模型的分类效果以直观的方式进行展示。这种可视化的展示方式,极大地有助于对模型性能进行直观的分析和比较,为进一步优化模型提供了有力的参考依据。

输出定量结果如下:

十折验证准确率:0.97561

训练集ACU:0.97561

验证集ACU:1

测试集ACU:1

运行时长:1.918

代码有中文介绍。

🏆代码获取方式1:

私信博主

🏆代码获取方式2

利用同等价值的matlab代码兑换博主的matlab代码

先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。

相关推荐
禾风wyh8 分钟前
(ICLR 2019)APPNP传播用 PageRank,不用神经网络!
人工智能·深度学习·神经网络
Dxy123931021611 分钟前
Python为什么要使用可迭代对象
开发语言·python
Keep_Trying_Go25 分钟前
论文STEERER人群计数,车辆计数以及农作物计数算法详解(pytorch)
人工智能·pytorch·python
gzu_0126 分钟前
基于昇腾 配置pytorch环境
人工智能·pytorch·python
陈 洪 伟27 分钟前
AI理论知识系统复习(6):梯度饱和、梯度消失、梯度爆炸
人工智能
云在Steven35 分钟前
在线确定性算法与自适应启发式在虚拟机动态整合中的竞争分析与性能优化
人工智能·算法·性能优化
前进的李工1 小时前
LeetCode hot100:234 回文链表:快慢指针巧判回文链表
python·算法·leetcode·链表·快慢指针·回文链表
sin_hielo1 小时前
leetcode 3228
算法·leetcode
mit6.8241 小时前
[AI tradingOS] AI决策引擎 | decision/engine.go | 交易哲学prompts
人工智能·区块链
嫂子的姐夫1 小时前
23-MD5+DES+Webpack:考试宝
java·爬虫·python·webpack·node.js·逆向