分享| RL-GPT 框架通过慢agent和快agent结合提高AI解决复杂任务的能力-Arxiv

结论

"RL-GPT: Integrating Reinforcement Learning and Code-as-policy"

RL-GPT 框架为解决大语言模型在复杂任务处理中的难题提供了创新有效的途径,

旨在将强化学习(RL)和代码即策略相结合,

以解决大语言模型(LLMs)在处理复杂逻辑和精确控制方面的局限性。

研究背景

LLMs 能通过编码熟练使用各种工具,但在处理复杂逻辑精确控制时存在不足。

在具身任务中,高级规划适合直接编码低级动作则常需像 RL 这样特定任务的优化。

方案

引入两级分层框架 RL - GPT,包含慢智能体和快智能体。

慢智能体分析适合编码的动作,快智能体执行编码任务,这种分工使各智能体专注特定任务,提升效率。

实验结果

该方法优于传统 RL 方法和现有的 GPT 智能体。在 Minecraft 游戏中,使用 RTX3090 显卡能在一天内快速获取钻石,并且在所有指定的 MineDojo 任务中达到了最优性能(SOTA)

原文链接:

[2402.19299] RL-GPT: Integrating Reinforcement Learning and Code-as-policy

相关推荐
智驱力人工智能几秒前
高密爆炸警钟长鸣:AI为化工安全戴上“智能护盾”
人工智能·算法·安全·重构·边缘计算·高密爆炸·高密化工厂
元闰子12 分钟前
AI Agent需要什么样的数据库?
数据库·人工智能·后端
蚂蚁数据AntData13 分钟前
⼤模型驱动的DeepInsight Copilot在蚂蚁的技术实践
大数据·人工智能·数据分析·copilot·数据库架构
LeonDL16815 分钟前
HALCON 深度学习训练 3D 图像的几种方式优缺点
人工智能·python·深度学习·3d·halcon·halcon训练3d图像·深度学习训练3d图像
jmsail16 分钟前
Dynamics 365 Business Central AI Sales Order Agent Copilot
人工智能·microsoft·copilot·dynamics 365·d365 bc erp
要养家的程序猿31 分钟前
RagFlow优化&代码解析(一)
人工智能·ai
凯禾瑞华现代家政1 小时前
适老化场景重构:现代家政老年照护虚拟仿真实训室建设方案
人工智能·系统架构·虚拟现实
Wnq100721 小时前
通用人工智能 (AGI): 定义、挑战与未来展望
人工智能·agi
宋一诺331 小时前
机器学习——放回抽样
人工智能·机器学习