分享| RL-GPT 框架通过慢agent和快agent结合提高AI解决复杂任务的能力-Arxiv

结论

"RL-GPT: Integrating Reinforcement Learning and Code-as-policy"

RL-GPT 框架为解决大语言模型在复杂任务处理中的难题提供了创新有效的途径,

旨在将强化学习(RL)和代码即策略相结合,

以解决大语言模型(LLMs)在处理复杂逻辑和精确控制方面的局限性。

研究背景

LLMs 能通过编码熟练使用各种工具,但在处理复杂逻辑精确控制时存在不足。

在具身任务中,高级规划适合直接编码低级动作则常需像 RL 这样特定任务的优化。

方案

引入两级分层框架 RL - GPT,包含慢智能体和快智能体。

慢智能体分析适合编码的动作,快智能体执行编码任务,这种分工使各智能体专注特定任务,提升效率。

实验结果

该方法优于传统 RL 方法和现有的 GPT 智能体。在 Minecraft 游戏中,使用 RTX3090 显卡能在一天内快速获取钻石,并且在所有指定的 MineDojo 任务中达到了最优性能(SOTA)

原文链接:

[2402.19299] RL-GPT: Integrating Reinforcement Learning and Code-as-policy

相关推荐
sirius123451236 分钟前
自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
人工智能·pytorch·逻辑回归
BugNest1 小时前
计算机视觉和图像处理
图像处理·人工智能·机器学习·计算机视觉·ai
云空1 小时前
《DeepSeek手机版:开启AI移动新时代》
人工智能·智能手机
开心的AI频道1 小时前
2025年AI手机集中上市,三星Galaxy S25系列上市
人工智能·智能手机
大道戏1 小时前
如何本地部署DeepSeek
windows·ai·deepseek
IT古董2 小时前
【漫话机器学习系列】066.贪心算法(Greedy Algorithms)
人工智能·机器学习·贪心算法
Blockchina2 小时前
如何使用 DeepSeek 和 Dexscreener 构建免费的 AI 加密交易机器人?
人工智能·python·ai编程·deepseek
xwz小王子2 小时前
ICLR 2025收录论文:为什么动作分块对于机器人灵活性至关重要?
人工智能·机器人
梦云澜2 小时前
论文阅读(九):通过概率图模型建立连锁不平衡模型和进行关联研究:最新进展访问之旅
论文阅读·人工智能·深度学习