分享| RL-GPT 框架通过慢agent和快agent结合提高AI解决复杂任务的能力-Arxiv

结论

"RL-GPT: Integrating Reinforcement Learning and Code-as-policy"

RL-GPT 框架为解决大语言模型在复杂任务处理中的难题提供了创新有效的途径,

旨在将强化学习(RL)和代码即策略相结合,

以解决大语言模型(LLMs)在处理复杂逻辑和精确控制方面的局限性。

研究背景

LLMs 能通过编码熟练使用各种工具,但在处理复杂逻辑精确控制时存在不足。

在具身任务中,高级规划适合直接编码低级动作则常需像 RL 这样特定任务的优化。

方案

引入两级分层框架 RL - GPT,包含慢智能体和快智能体。

慢智能体分析适合编码的动作,快智能体执行编码任务,这种分工使各智能体专注特定任务,提升效率。

实验结果

该方法优于传统 RL 方法和现有的 GPT 智能体。在 Minecraft 游戏中,使用 RTX3090 显卡能在一天内快速获取钻石,并且在所有指定的 MineDojo 任务中达到了最优性能(SOTA)

原文链接:

[2402.19299] RL-GPT: Integrating Reinforcement Learning and Code-as-policy

相关推荐
zxsz_com_cn8 分钟前
风电行业预测性维护解决方案:AIoT驱动下的风机健康管理革命
大数据·运维·人工智能
Y1nhl1 小时前
搜广推校招面经六十四
人工智能·深度学习·leetcode·广告算法·推荐算法·搜索算法
禁默1 小时前
智能体开发基础:从概念到实现
人工智能·大模型·智能体
Y1nhl2 小时前
Pyspark学习一:概述
数据库·人工智能·深度学习·学习·spark·pyspark·大数据技术
简简单单做算法4 小时前
基于mediapipe深度学习和限定半径最近邻分类树算法的人体摔倒检测系统python源码
人工智能·python·深度学习·算法·分类·mediapipe·限定半径最近邻分类树
就决定是你啦!5 小时前
机器学习 第一章 绪论
人工智能·深度学习·机器学习
有个人神神叨叨7 小时前
OpenAI发布的《Addendum to GPT-4o System Card: Native image generation》文件的详尽笔记
人工智能·笔记
林九生8 小时前
【Python】Browser-Use:让 AI 替你掌控浏览器,开启智能自动化新时代!
人工智能·python·自动化
liuyunshengsir8 小时前
AI Agent 实战:搭建个人在线旅游助手
人工智能·旅游