Attention Free Transformer (AFT)-2020论文笔记


名称:

Attention Free Transformer (AFT)

来源:

[2105.14103] An Attention Free Transformer

相关工作:

#Approximatingthedotproduct #Sparselocalattention #Contextcompression #Eliminatingdotproductattention #MLPsforvision

创新点:

贡献:

  • 提出了一种全新的注意力机制替代方案,完全摒弃了点积注意力。

  • AFT的计算复杂度与输入长度和特征维度呈线性关系,适用于大规模数据。

  • AFT-local和AFT-conv变体通过引入局部性和空间权重共享,进一步提高了模型的效率和性能。

代码:

python 复制代码
# ---------------------------------------  
# 论文:An Attention Free Transformer (arxiv2021)  
# ---------------------------------------  
import torch  
from torch import nn  
from torch.nn import init  
  
  
class AFT_FULL(nn.Module):  
  
    def __init__(self, d_model, n=49, simple=False):  
  
        super(AFT_FULL, self).__init__()  
        self.fc_q = nn.Linear(d_model, d_model)  
        self.fc_k = nn.Linear(d_model, d_model)  
        self.fc_v = nn.Linear(d_model, d_model)  
        if (simple):  
            self.position_biases = torch.zeros((n, n))  
        else:  
            self.position_biases = nn.Parameter(torch.ones((n, n)))  
        self.d_model = d_model  
        self.n = n  
        self.sigmoid = nn.Sigmoid()  
  
        self.init_weights()  
  
    def init_weights(self):  
        for m in self.modules():  
            if isinstance(m, nn.Conv2d):  
                init.kaiming_normal_(m.weight, mode='fan_out')  
                if m.bias is not None:  
                    init.constant_(m.bias, 0)  
            elif isinstance(m, nn.BatchNorm2d):  
                init.constant_(m.weight, 1)  
                init.constant_(m.bias, 0)  
            elif isinstance(m, nn.Linear):  
                init.normal_(m.weight, std=0.001)  
                if m.bias is not None:  
                    init.constant_(m.bias, 0)  
  
    def forward(self, input):  
  
        bs, n, dim = input.shape  
  
        q = self.fc_q(input)  # bs,n,dim  
        k = self.fc_k(input).view(1, bs, n, dim)  # 1,bs,n,dim  
        v = self.fc_v(input).view(1, bs, n, dim)  # 1,bs,n,dim  
  
        numerator = torch.sum(torch.exp(k + self.position_biases.view(n, 1, -1, 1)) * v, dim=2)  # n,bs,dim  
        denominator = torch.sum(torch.exp(k + self.position_biases.view(n, 1, -1, 1)), dim=2)  # n,bs,dim  
  
        out = (numerator / denominator)  # n,bs,dim  
        out = self.sigmoid(q) * (out.permute(1, 0, 2))  # bs,n,dim  
  
        return out  
  
  
# 输入 B C N,  输出 B C Nif __name__ == '__main__':  
    block = AFT_FULL(d_model=512, n=64).cuda()  
    input = torch.rand(64, 64, 512).cuda()  
    output = block( input)  
    print(input.size(), output.size())
    
相关推荐
有Li26 分钟前
联合建模组织学和分子标记用于癌症分类|文献速递-深度学习医疗AI最新文献
人工智能·深度学习·分类
乌旭37 分钟前
开源GPU架构RISC-V VCIX的深度学习潜力测试:从RTL仿真到MNIST实战
人工智能·深度学习·stable diffusion·架构·aigc·midjourney·risc-v
qq_4162764243 分钟前
SuperYOLO:多模态遥感图像中的超分辨率辅助目标检测之论文阅读
论文阅读·人工智能·目标检测
立秋67892 小时前
从零开始:使用 PyTorch 构建深度学习网络
人工智能·pytorch·深度学习
21级的乐未央2 小时前
论文阅读(四):Agglomerative Transformer for Human-Object Interaction Detection
论文阅读·深度学习·计算机视觉·transformer
埃菲尔铁塔_CV算法3 小时前
深度学习驱动下的目标检测技术:原理、算法与应用创新(二)
深度学习·算法·目标检测
KangkangLoveNLP4 小时前
Llama:开源的急先锋
人工智能·深度学习·神经网络·算法·机器学习·自然语言处理·llama
机器学习之心4 小时前
改进模糊C均值时序聚类+编码器状态识别!IPOA-FCM-Transformer组合模型
均值算法·transformer·聚类·ipoa-fcm·改进模糊c均值时序聚类
久邦科技4 小时前
《Deepseek从入门到精通》清华大学中文pdf完整版
人工智能·深度学习·机器学习
来自于狂人4 小时前
给大模型“贴膏药”:LoRA微调原理说明书
人工智能·深度学习·transformer