Attention Free Transformer (AFT)-2020论文笔记


名称:

Attention Free Transformer (AFT)

来源:

[2105.14103] An Attention Free Transformer

相关工作:

#Approximatingthedotproduct #Sparselocalattention #Contextcompression #Eliminatingdotproductattention #MLPsforvision

创新点:

贡献:

  • 提出了一种全新的注意力机制替代方案,完全摒弃了点积注意力。

  • AFT的计算复杂度与输入长度和特征维度呈线性关系,适用于大规模数据。

  • AFT-local和AFT-conv变体通过引入局部性和空间权重共享,进一步提高了模型的效率和性能。

代码:

python 复制代码
# ---------------------------------------  
# 论文:An Attention Free Transformer (arxiv2021)  
# ---------------------------------------  
import torch  
from torch import nn  
from torch.nn import init  
  
  
class AFT_FULL(nn.Module):  
  
    def __init__(self, d_model, n=49, simple=False):  
  
        super(AFT_FULL, self).__init__()  
        self.fc_q = nn.Linear(d_model, d_model)  
        self.fc_k = nn.Linear(d_model, d_model)  
        self.fc_v = nn.Linear(d_model, d_model)  
        if (simple):  
            self.position_biases = torch.zeros((n, n))  
        else:  
            self.position_biases = nn.Parameter(torch.ones((n, n)))  
        self.d_model = d_model  
        self.n = n  
        self.sigmoid = nn.Sigmoid()  
  
        self.init_weights()  
  
    def init_weights(self):  
        for m in self.modules():  
            if isinstance(m, nn.Conv2d):  
                init.kaiming_normal_(m.weight, mode='fan_out')  
                if m.bias is not None:  
                    init.constant_(m.bias, 0)  
            elif isinstance(m, nn.BatchNorm2d):  
                init.constant_(m.weight, 1)  
                init.constant_(m.bias, 0)  
            elif isinstance(m, nn.Linear):  
                init.normal_(m.weight, std=0.001)  
                if m.bias is not None:  
                    init.constant_(m.bias, 0)  
  
    def forward(self, input):  
  
        bs, n, dim = input.shape  
  
        q = self.fc_q(input)  # bs,n,dim  
        k = self.fc_k(input).view(1, bs, n, dim)  # 1,bs,n,dim  
        v = self.fc_v(input).view(1, bs, n, dim)  # 1,bs,n,dim  
  
        numerator = torch.sum(torch.exp(k + self.position_biases.view(n, 1, -1, 1)) * v, dim=2)  # n,bs,dim  
        denominator = torch.sum(torch.exp(k + self.position_biases.view(n, 1, -1, 1)), dim=2)  # n,bs,dim  
  
        out = (numerator / denominator)  # n,bs,dim  
        out = self.sigmoid(q) * (out.permute(1, 0, 2))  # bs,n,dim  
  
        return out  
  
  
# 输入 B C N,  输出 B C Nif __name__ == '__main__':  
    block = AFT_FULL(d_model=512, n=64).cuda()  
    input = torch.rand(64, 64, 512).cuda()  
    output = block( input)  
    print(input.size(), output.size())
    
相关推荐
Ai墨芯1111 小时前
深度学习水论文:特征提取
人工智能·深度学习
SHIPKING3931 小时前
【机器学习&深度学习】LLamaFactory微调效果与vllm部署效果不一致如何解决
人工智能·深度学习·机器学习
闻道且行之2 小时前
Windows|CUDA和cuDNN下载和安装,默认安装在C盘和不安装在C盘的两种方法
windows·深度学习·cuda·cudnn
生医转码,四海为家4 小时前
零基础-动手学深度学习-6.6 卷积神经网络(LeNet)
人工智能·深度学习·cnn
CoovallyAIHub4 小时前
避开算力坑!无人机桥梁检测场景下YOLO模型选型指南
深度学习·算法·计算机视觉
s1ckrain5 小时前
【论文阅读】ON THE ROLE OF ATTENTION HEADS IN LARGE LANGUAGE MODEL SAFETY
论文阅读·人工智能·语言模型·大模型安全
seasonsyy6 小时前
2.安装CUDA详细步骤(含安装截图)
python·深度学习·环境配置·cuda
淦暴尼8 小时前
银行客户流失预测分析
python·深度学习·算法
go54631584658 小时前
在本地环境中运行 ‘dom-distiller‘ GitHub 库的完整指南
人工智能·深度学习·神经网络·算法·矩阵·github
边缘常驻民9 小时前
PyTorch深度学习入门记录3
人工智能·pytorch·深度学习