算法【有依赖的背包】

有依赖的背包是指多个物品变成一个复合物品(互斥),每件复合物品不要和怎么要多种可能性展开。时间复杂度O(物品个数 * 背包容量),额外空间复杂度O(背包容量)。

下面通过题目加深理解。

题目一

测试链接:[NOIP2006 提高组] 金明的预算方案 - 洛谷

分析:对于这道题,可以参考01背包是对每个物品进行可能性的展开,有依赖的背包是对主件进行可能性的展开,所以可能性就比01背包的展开多。对于一个没有附件的主件可能性的展开,就是01背包的展开,即选或不选主件。对于有一个附件的主件可能性的展开,就有三种,选主件、不选主件、主件和附件一起选。对于有两个附件的主件可能性的展开,就有五种,选主件、不选主件、主件和第一个附件一起选、主件和第二个附件一起选、主件和两个附件一起选。对于输入,代码中采用了几个数组结构存储信息,cost数组存储花费代价,value数组存储收益,king数组存储是否是主件,fans数组存储主件有多少个附件,follows数组存储每个主件拥有的附件。下面代码采用计划搜索,并没有去做空间压缩,代码如下。

cpp 复制代码
#include <iostream>
#include <vector>
using namespace std;
int n, m;
int cost[61];
int value[61];
bool king[61];
int fans[61] = {0};
vector<vector<int>> follows;
int dp[61][32001];
int f(int index, int money){
    if(index == m+1){
        return 0;
    }
    if(dp[index][money] != -1){
        return dp[index][money];
    }
    if(!king[index]){
        return f(index+1, money);
    }
    int ans = f(index+1, money);
    if(money - cost[index] >= 0){
        ans = ans > f(index+1, money-cost[index]) + value[index] ?
        ans : f(index+1, money-cost[index]) + value[index];
    }
    if(fans[index] >= 1 && money - cost[index] - cost[follows[index][0]] >= 0){
        ans = ans > f(index+1, money-cost[index]-cost[follows[index][0]]) + value[index] + value[follows[index][0]] ?
        ans : f(index+1, money-cost[index]-cost[follows[index][0]]) + value[index] + value[follows[index][0]];
    }
    if(fans[index] == 2){
        if(money - cost[index] - cost[follows[index][1]] >= 0){
            ans = ans > f(index+1, money-cost[index]-cost[follows[index][1]]) + value[index] + value[follows[index][1]] ?
            ans : f(index+1, money-cost[index]-cost[follows[index][1]]) + value[index] + value[follows[index][1]];
        }
        if(money - cost[index] - cost[follows[index][0]] - cost[follows[index][1]] >= 0){
            ans = ans > f(index+1, money-cost[index]-cost[follows[index][0]]-cost[follows[index][1]]) + value[index] + value[follows[index][0]] + value[follows[index][1]] ?
            ans : f(index+1, money-cost[index]-cost[follows[index][0]]-cost[follows[index][1]]) + value[index] + value[follows[index][0]] + value[follows[index][1]];
        }
    }
    dp[index][money] = ans;
    return ans;
}
int main(void){
    int v, p, q;
    scanf("%d%d", &n, &m);
    vector<int> temp;
    for(int i = 0;i <= m;++i){
        follows.push_back(temp);
    }
    for(int i = 1;i <= m;++i){
        scanf("%d%d%d", &v, &p, &q);
        cost[i] = v;
        value[i] = v * p;
        if(q != 0){
            king[i] = false;
            fans[q]++;
            follows[q].push_back(i);
        }else{
            king[i] = true;
        }
    }
    for(int i = 1;i < 61;++i){
        for(int j = 1;j < 32001;++j){
            dp[i][j] = -1;
        }
    }
    printf("%d", f(1, n));
    return 0;
}
相关推荐
向阳@向远方1 小时前
第二章 简单程序设计
开发语言·c++·算法
github_czy2 小时前
RRF (Reciprocal Rank Fusion) 排序算法详解
算法·排序算法
许愿与你永世安宁2 小时前
力扣343 整数拆分
数据结构·算法·leetcode
爱coding的橙子2 小时前
每日算法刷题Day42 7.5:leetcode前缀和3道题,用时2h
算法·leetcode·职场和发展
满分观察网友z3 小时前
从一次手滑,我洞悉了用户输入的所有可能性(3330. 找到初始输入字符串 I)
算法
YuTaoShao3 小时前
【LeetCode 热题 100】73. 矩阵置零——(解法二)空间复杂度 O(1)
java·算法·leetcode·矩阵
Heartoxx3 小时前
c语言-指针(数组)练习2
c语言·数据结构·算法
大熊背3 小时前
图像处理专业书籍以及网络资源总结
人工智能·算法·microsoft
满分观察网友z3 小时前
别怕树!一层一层剥开它的心:用BFS/DFS优雅计算层平均值(637. 二叉树的层平均值)
算法
杰克尼5 小时前
1. 两数之和 (leetcode)
数据结构·算法·leetcode