Deepseek-R1 和 OpenAI o1 这样的推理模型普遍存在“思考不足”的问题

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

等模型如何处理复杂推理。结果显示,o1 这类大模型在面临难题时容易陷入"推理崩溃",计算资源被不断尝试新方法消耗殆尽。然而,正确率更高的模型并不一定更高效,它们可能只是更擅长找到最终答案,而非更聪明地利用计算资源。

如何让 AI"坚持己见"?

为了解决"思维不坚定"问题,研究团队提出了一种新的解码策略------"思维切换惩罚"(TIP)。它通过调整模型的概率分布,降低某些表示策略变化的词语(比如"或者")的权重,从而让 AI 在跳到新思路前,更深入地探索当前路径。

结果表明,TIP 确实让 AI 更加"坚定立场":QwQ-32B-Preview 在数学竞赛 MATH500-Hard 任务中的正确率从 82.8% 提高到了 84.3%,并且推理过程更加稳定。这一改进同样适用于 GPQA Diamond、AIME2024 等高难度测试集。

研究人员表示,这项研究揭示了一个关键点------提升 AI 的推理能力并不只是堆砌更多算力,而是要教会模型什么时候应该坚持,什么时候才该换思路。未来,他们计划进一步优化 AI 的问题解决方式,让它们自主判断"该坚持还是该变通",从而真正实现更高效、更聪明的推理过程。

相关推荐
Work(沉淀版)1 小时前
DAY 40
人工智能·深度学习·机器学习
蓦然回首却已人去楼空2 小时前
Build a Large Language Model (From Scratch) 序章
人工智能·语言模型·自然语言处理
CM莫问2 小时前
<论文>(微软)WINA:用于加速大语言模型推理的权重感知神经元激活
人工智能·算法·语言模型·自然语言处理·大模型·推理加速
拾忆-eleven2 小时前
NLP学习路线图(二十六):自注意力机制
人工智能·深度学习
FreeBuf_2 小时前
最新研究揭示云端大语言模型防护机制的成效与缺陷
网络·安全·语言模型
MYH5163 小时前
在NLP文本处理中,将字符映射到阿拉伯数字(构建词汇表vocab)的核心目的和意义
人工智能·深度学习·自然语言处理
要努力啊啊啊3 小时前
KV Cache:大语言模型推理加速的核心机制详解
人工智能·语言模型·自然语言处理
mzlogin5 小时前
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
人工智能
归去_来兮5 小时前
知识图谱技术概述
大数据·人工智能·知识图谱
就是有点傻5 小时前
VM图像处理之图像二值化
图像处理·人工智能·计算机视觉