使用 Numpy 自定义数据集,使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数

1. 导入必要的库

首先,导入我们需要的库:Numpy、Pytorch 和相关工具包。

复制代码
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import accuracy_score, recall_score, f1_score
2. 自定义数据集

使用 Numpy 创建一个简单的线性可分数据集,并将其转换为 Pytorch 张量。

复制代码
# 创建数据集
X = np.random.rand(100, 2)  # 100 个样本,2 个特征
y = (X[:, 0] + X[:, 1] > 1).astype(int)  # 标签,若特征之和大于1则为 1,否则为 0

# 转换为 PyTorch 张量
X_train = torch.tensor(X, dtype=torch.float32)
y_train = torch.tensor(y, dtype=torch.long)
3. 定义逻辑回归模型

在 Pytorch 中定义一个简单的逻辑回归模型。

复制代码
class LogisticRegressionModel(nn.Module):
    def __init__(self, input_dim):
        super(LogisticRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, 2)  # 二分类问题

    def forward(self, x):
        return self.linear(x)
4. 初始化模型、损失函数和优化器
复制代码
# 初始化模型
model = LogisticRegressionModel(input_dim=2)

# 损失函数与优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.SGD(model.parameters(), lr=0.01)
5. 训练模型

训练模型并保存训练好的权重。

复制代码
epochs = 100
for epoch in range(epochs):
    # 前向传播
    outputs = model(X_train)
    loss = criterion(outputs, y_train)

    # 反向传播
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if (epoch+1) % 20 == 0:
        print(f"Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}")

# 保存模型
torch.save(model.state_dict(), 'logistic_regression.pth')
6. 加载模型并进行预测

加载保存的模型并进行预测。

复制代码
# 加载模型
model = LogisticRegressionModel(input_dim=2)
model.load_state_dict(torch.load('logistic_regression.pth'))
model.eval()  # 设为评估模式

# 预测
with torch.no_grad():
    y_pred = model(X_train)
    _, predicted = torch.max(y_pred, 1)
7. 计算精确度、召回率和 F1 分数

使用 sklearn 中的评估函数计算精确度、召回率和 F1 分数。

复制代码
accuracy = accuracy_score(y_train, predicted)
recall = recall_score(y_train, predicted)
f1 = f1_score(y_train, predicted)

print(f"Accuracy: {accuracy:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1 Score: {f1:.4f}")
8. 总结

这篇博客展示了如何使用 Numpy 自定义数据集,利用 Pytorch 框架实现逻辑回归模型,并进行训练。训练后的模型被保存,并在加载后进行预测,最后计算了精确度、召回率和 F1 分数。

相关推荐
weisian1516 分钟前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维
Java程序员 拥抱ai9 分钟前
撰写「从0到1构建下一代游戏AI客服」系列技术博客的初衷
人工智能
186******2053112 分钟前
AI重构项目开发全流程:效率革命与实践指南
人工智能·重构
森之鸟21 分钟前
多智能体系统开发入门:用鸿蒙实现设备间的AI协同决策
人工智能·harmonyos·m
铁蛋AI编程实战28 分钟前
大模型本地轻量化微调+端侧部署实战(免高端GPU/16G PC可运行)
人工智能·架构·开源
铁蛋AI编程实战28 分钟前
最新版 Kimi K2.5 完整使用教程:从入门到实战(开源部署+API接入+多模态核心功能)
人工智能·开源
我有医保我先冲32 分钟前
AI 时代 “任务完成“ 与 “专业能力“ 的区分:理论基础、行业影响与个人发展策略
人工智能·python·机器学习
林深现海33 分钟前
【刘二大人】PyTorch深度学习实践笔记 —— 第一集:深度学习全景概述(超详细版)
pytorch·笔记·深度学习
Bamtone202540 分钟前
PCB切片分析新方案:Bamtone MS90集成AI的智能测量解决方案
人工智能
Warren2Lynch42 分钟前
2026年专业软件工程与企业架构的智能化演进
人工智能·架构·软件工程