使用 Numpy 自定义数据集,使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数

1. 导入必要的库

首先,导入我们需要的库:Numpy、Pytorch 和相关工具包。

复制代码
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import accuracy_score, recall_score, f1_score
2. 自定义数据集

使用 Numpy 创建一个简单的线性可分数据集,并将其转换为 Pytorch 张量。

复制代码
# 创建数据集
X = np.random.rand(100, 2)  # 100 个样本,2 个特征
y = (X[:, 0] + X[:, 1] > 1).astype(int)  # 标签,若特征之和大于1则为 1,否则为 0

# 转换为 PyTorch 张量
X_train = torch.tensor(X, dtype=torch.float32)
y_train = torch.tensor(y, dtype=torch.long)
3. 定义逻辑回归模型

在 Pytorch 中定义一个简单的逻辑回归模型。

复制代码
class LogisticRegressionModel(nn.Module):
    def __init__(self, input_dim):
        super(LogisticRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, 2)  # 二分类问题

    def forward(self, x):
        return self.linear(x)
4. 初始化模型、损失函数和优化器
复制代码
# 初始化模型
model = LogisticRegressionModel(input_dim=2)

# 损失函数与优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.SGD(model.parameters(), lr=0.01)
5. 训练模型

训练模型并保存训练好的权重。

复制代码
epochs = 100
for epoch in range(epochs):
    # 前向传播
    outputs = model(X_train)
    loss = criterion(outputs, y_train)

    # 反向传播
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if (epoch+1) % 20 == 0:
        print(f"Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}")

# 保存模型
torch.save(model.state_dict(), 'logistic_regression.pth')
6. 加载模型并进行预测

加载保存的模型并进行预测。

复制代码
# 加载模型
model = LogisticRegressionModel(input_dim=2)
model.load_state_dict(torch.load('logistic_regression.pth'))
model.eval()  # 设为评估模式

# 预测
with torch.no_grad():
    y_pred = model(X_train)
    _, predicted = torch.max(y_pred, 1)
7. 计算精确度、召回率和 F1 分数

使用 sklearn 中的评估函数计算精确度、召回率和 F1 分数。

复制代码
accuracy = accuracy_score(y_train, predicted)
recall = recall_score(y_train, predicted)
f1 = f1_score(y_train, predicted)

print(f"Accuracy: {accuracy:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1 Score: {f1:.4f}")
8. 总结

这篇博客展示了如何使用 Numpy 自定义数据集,利用 Pytorch 框架实现逻辑回归模型,并进行训练。训练后的模型被保存,并在加载后进行预测,最后计算了精确度、召回率和 F1 分数。

相关推荐
蹦蹦跳跳真可爱58919 分钟前
Python----计算机视觉处理(Opencv:霍夫变换)
人工智能·python·opencv·计算机视觉
livefan38 分钟前
英伟达「虚拟轨道+AI调度」专利:开启自动驾驶3.0时代的隐形革命
人工智能·机器学习·自动驾驶
wd20998842 分钟前
手绘的思维导图怎么转成电子版思维导图?分享今年刚测试出来的方法
人工智能·powerpoint
魔珐科技44 分钟前
专访中兴通讯蒋军:AI数字人驱动企业培训,“内容生产”与“用户体验”双重提升
人工智能·aigc·ai数字人
果冻人工智能1 小时前
Linux 之父把 AI 泡沫喷了个遍:90% 是营销,10% 是现实。
人工智能
果冻人工智能2 小时前
Sal Khan 和 Bill Gates 对 AI 的看法错了
人工智能
说私域2 小时前
开源链动2+1模式、AI智能名片与S2B2C商城小程序源码在社交电商渠道拓宽中的协同应用研究
人工智能·小程序·开源·零售
数据猎手小K2 小时前
REALM:一个包含超过 94,000 个大规模记录真实世界大语言模型应用的数据集
人工智能
烟锁池塘柳02 小时前
【深度学习】GAN生成对抗网络:原理、应用与发展
人工智能·深度学习·生成对抗网络
梦想画家2 小时前
使用 PyTorch 构建问答系统的 Transformer 模型:从原理到实践
pytorch·架构