使用 Numpy 自定义数据集,使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数

1. 导入必要的库

首先,导入我们需要的库:Numpy、Pytorch 和相关工具包。

复制代码
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import accuracy_score, recall_score, f1_score
2. 自定义数据集

使用 Numpy 创建一个简单的线性可分数据集,并将其转换为 Pytorch 张量。

复制代码
# 创建数据集
X = np.random.rand(100, 2)  # 100 个样本,2 个特征
y = (X[:, 0] + X[:, 1] > 1).astype(int)  # 标签,若特征之和大于1则为 1,否则为 0

# 转换为 PyTorch 张量
X_train = torch.tensor(X, dtype=torch.float32)
y_train = torch.tensor(y, dtype=torch.long)
3. 定义逻辑回归模型

在 Pytorch 中定义一个简单的逻辑回归模型。

复制代码
class LogisticRegressionModel(nn.Module):
    def __init__(self, input_dim):
        super(LogisticRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, 2)  # 二分类问题

    def forward(self, x):
        return self.linear(x)
4. 初始化模型、损失函数和优化器
复制代码
# 初始化模型
model = LogisticRegressionModel(input_dim=2)

# 损失函数与优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.SGD(model.parameters(), lr=0.01)
5. 训练模型

训练模型并保存训练好的权重。

复制代码
epochs = 100
for epoch in range(epochs):
    # 前向传播
    outputs = model(X_train)
    loss = criterion(outputs, y_train)

    # 反向传播
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if (epoch+1) % 20 == 0:
        print(f"Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}")

# 保存模型
torch.save(model.state_dict(), 'logistic_regression.pth')
6. 加载模型并进行预测

加载保存的模型并进行预测。

复制代码
# 加载模型
model = LogisticRegressionModel(input_dim=2)
model.load_state_dict(torch.load('logistic_regression.pth'))
model.eval()  # 设为评估模式

# 预测
with torch.no_grad():
    y_pred = model(X_train)
    _, predicted = torch.max(y_pred, 1)
7. 计算精确度、召回率和 F1 分数

使用 sklearn 中的评估函数计算精确度、召回率和 F1 分数。

复制代码
accuracy = accuracy_score(y_train, predicted)
recall = recall_score(y_train, predicted)
f1 = f1_score(y_train, predicted)

print(f"Accuracy: {accuracy:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1 Score: {f1:.4f}")
8. 总结

这篇博客展示了如何使用 Numpy 自定义数据集,利用 Pytorch 框架实现逻辑回归模型,并进行训练。训练后的模型被保存,并在加载后进行预测,最后计算了精确度、召回率和 F1 分数。

相关推荐
会飞的老朱2 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º3 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee5 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º6 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys6 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56786 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子6 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能7 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144877 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile7 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算