使用PyTorch实现逻辑回归:从训练到模型保存与性能评估

1. 引入必要的库

首先,需要引入必要的库。PyTorch用于构建和训练模型,pandas和numpy用于数据处理,scikit-learn用于计算性能指标。

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
import numpy as np
from sklearn.metrics import accuracy_score, recall_score, f1_score

2. 加载自定义数据集

假设有一个CSV文件custom_dataset.csv,其中包含特征(自变量)和标签(因变量)。我们使用pandas来加载数据,并进行预处理。

python 复制代码
# 加载自定义数据集
data = pd.read_csv('custom_dataset.csv')

# 假设数据集中有多列特征和一个二分类标签
X = data.iloc[:, :-1].values.astype(np.float32)  # 特征
y = data.iloc[:, -1].values.astype(np.float32)   # 标签

# 将标签转换为0和1
y = np.where(y == 'positive', 1, 0)

3. 构建逻辑回归模型

使用PyTorch来构建逻辑回归模型。

python 复制代码
# 构建逻辑回归模型
class LogisticRegression(nn.Module):
    def __init__(self, num_features):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(num_features, 1)
    
    def forward(self, x):
        return torch.sigmoid(self.linear(x))

# 初始化模型
num_features = X.shape[1]
model = LogisticRegression(num_features)

4. 定义损失函数和优化器

我们使用二元交叉熵损失函数和随机梯度下降(SGD)优化器。

python 复制代码
# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

5. 训练模型

使用自定义数据集训练模型。

python 复制代码
# 将数据转换为PyTorch的张量
X_tensor = torch.tensor(X)
y_tensor = torch.tensor(y.reshape(-1, 1))

# 训练模型
num_epochs = 100
batch_size = 32
for epoch in range(num_epochs):
    for i in range(0, len(X), batch_size):
        X_batch = X_tensor[i:i+batch_size]
        y_batch = y_tensor[i:i+batch_size]
        
        # 前向传播
        outputs = model(X_batch)
        loss = criterion(outputs, y_batch)
        
        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
    if (epoch+1) % 10 == 0:
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}')

6. 保存模型

训练完成后,我们可以使用PyTorch的state_dict方法保存模型。

python 复制代码
# 保存模型
torch.save(model.state_dict(), 'logistic_regression_model.pth')

7. 加载模型并进行预测

在需要时,我们可以使用PyTorch的load方法加载模型,并进行预测。

python 复制代码
# 加载模型
model = LogisticRegression(num_features)
model.load_state_dict(torch.load('logistic_regression_model.pth'))
model.eval()

# 进行预测
with torch.no_grad():
    X_test = torch.tensor(X[:5])
    predictions = model(X_test)
    predicted_labels = (predictions > 0.5).float().numpy().flatten()

print("Predicted Labels:", predicted_labels)

8. 性能评估

计算预测结果的精确度、召回率和F1分数。

python 复制代码
# 假设前5个样本为测试集,真实标签如下
y_true = y[:5]

# 计算性能指标
accuracy = accuracy_score(y_true, predicted_labels)
recall = recall_score(y_true, predicted_labels)
f1 = f1_score(y_true, predicted_labels)

print(f'Accuracy: {accuracy:.4f}')
print(f'Recall: {recall:.4f}')
print(f'F1 Score: {f1:.4f}')
相关推荐
之歆5 小时前
Spring AI入门到实战到原理源码-MCP
java·人工智能·spring
知乎的哥廷根数学学派5 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
且去填词5 小时前
DeepSeek :基于 Schema 推理与自愈机制的智能 ETL
数据仓库·人工智能·python·语言模型·etl·schema·deepseek
待续3015 小时前
订阅了 Qoder 之后,我想通过这篇文章分享一些个人使用心得和感受。
人工智能
weixin_397578025 小时前
人工智能发展历史
人工智能
强盛小灵通专卖员6 小时前
基于深度学习的山体滑坡检测科研辅导:从论文实验到系统落地的完整思路
人工智能·深度学习·sci·小论文·山体滑坡
OidEncoder6 小时前
从 “粗放清扫” 到 “毫米级作业”,编码器重塑环卫机器人新能力
人工智能·自动化·智慧城市
Hcoco_me6 小时前
大模型面试题61:Flash Attention中online softmax(在线softmax)的实现方式
人工智能·深度学习·自然语言处理·transformer·vllm
阿部多瑞 ABU6 小时前
`chenmo` —— 可编程元叙事引擎 V2.3+
linux·人工智能·python·ai写作
极海拾贝7 小时前
GeoScene解决方案中心正式上线!
大数据·人工智能·深度学习·arcgis·信息可视化·语言模型·解决方案