【机器学习理论】朴素贝叶斯网络

基础知识:

先验概率:对某个事件发生的概率的估计。可以是基于历史数据的估计,可以由专家知识得出等等。一般是单独事件概率。

后验概率:指某件事已经发生,计算事情发生是由某个因素引起的概率。一般是一个条件概率。

条件概率:条件事件发生后,另一个事件发生的概率。一般的形式为 P ( B ∣ A ) P(B|A) P(B∣A),表示 A A A发生的条件下 B B B发生的概率。
P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A) = \frac {P(AB)}{P(A)} P(B∣A)=P(A)P(AB)

贝叶斯公式基于先验概率,计算后验概率的方法;公式为:
P ( A ∣ B ) = P ( B ∣ A ) ⋅ P ( A ) P ( B ) P(A|B) = \frac {P(B|A) \cdot P(A)}{P(B)} P(A∣B)=P(B)P(B∣A)⋅P(A)

  • P ( A ∣ B ) P(A∣B) P(A∣B): 在事件 B B B 发生的条件下,事件 A A A 发生的概率(后验概率)。
  • P ( B ∣ A ) P(B | A) P(B∣A):在事件 A A A 发生的条件下,事件 B B B 的发生概率(似然概率)。
  • P ( A ) P(A) P(A):事件 A A A 发生的先验概率(先验知识)。
  • P ( B ) P(B) P(B):事件 B B B 发生的总概率。

贝叶斯公式可以从条件概率和全概率公式推导得出:

  1. 条件概率定义:
    P ( A ∣ B ) = P ( A ∩ B ) P ( B ) , P ( B ∣ A ) = P ( A ∩ B ) P ( A ) P(A | B) = \frac {P(A \cap B)}{P(B)}, P(B|A) = \frac {P(A \cap B)}{P(A)} P(A∣B)=P(B)P(A∩B),P(B∣A)=P(A)P(A∩B)
  2. 公式联立:
    P ( A ∩ B ) = P ( B ∣ A ) ⋅ P ( A ) = P ( A ∣ B ) ⋅ P ( B ) P(A \cap B) = P(B|A) \cdot P(A) = P(A | B) \cdot P(B) P(A∩B)=P(B∣A)⋅P(A)=P(A∣B)⋅P(B)
  3. 整理得到贝叶斯公式:
    P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A | B) = \frac {P(B | A) P(A)}{P(B)} P(A∣B)=P(B)P(B∣A)P(A)
  • 贝叶斯公式:将先验概率 P ( A ) P(A) P(A)、似然概率 P ( B ∣ A ) P(B∣A) P(B∣A) 和证据 P ( B ) P(B) P(B) 结合,计算后验概率 P ( A ∣ B ) P(A∣B) P(A∣B)。

朴素贝叶斯做出了一个假设"属性条件独立假设":对所有已知标签的样本,假设每个属性独立地对标签结果产生影响。(这是一个很强的条件)

假设样本为: x = { a 1 , a 2 , . . . , a d } x=\{a_{1}, a_{2}, ..., a_{d} \} x={a1,a2,...,ad},label为 Y = { c 1 , c 2 , c 3 , . . . , c n } Y = \{c_{1}, c_{2}, c_{3}, ...,c_{n} \} Y={c1,c2,c3,...,cn};则计算这样一个样本 x x x 的所属类别的公式为:
P ( c k ∣ x ) = max ⁡ { P ( c 1 ∣ x ) , P ( c 2 ∣ x ) , P ( c 3 ∣ x ) , . . . , P ( c n ∣ x ) } P(c_{k} | x) = \max \{ P(c_{1} |x), P(c_{2} | x), P(c_{3} | x), ..., P(c_{n} |x)\} P(ck∣x)=max{P(c1∣x),P(c2∣x),P(c3∣x),...,P(cn∣x)}

基于条件独立假设;可以得到
P ( c ∣ x ) = P ( c ) P ( x ∣ c ) P ( x ) = P ( c ) P ( x ) ∏ i = 1 d P ( x i ∣ c ) P(c|x) = \frac {P(c)P(x|c)}{P(x)} = \frac {P(c)}{P(x)} \prod_{i=1}^{d} P(x_{i}|c) P(c∣x)=P(x)P(c)P(x∣c)=P(x)P(c)i=1∏dP(xi∣c)

其中 d d d为属性数目, x i x_{i} xi为 x x x 在第 i i i 个属性上的取值。

我们重写上述公式:
h n b ( x ) = max ⁡ { P ( c 1 ∣ x ) , P ( c 2 ∣ x ) , P ( c 3 ∣ x ) , . . . , P ( c n ∣ x ) } = arg ⁡ max ⁡ c ∈ Y P ( c ) P ( x ) ∏ i = 1 d P ( x i ∣ C ) = arg ⁡ max ⁡ c ∈ Y P ( c ) ∏ i = 1 d P ( x i ∣ C ) \begin{align} h_{nb}(x) &= \max \{ P(c_{1} |x), P(c_{2} | x), P(c_{3} | x), ..., P(c_{n} |x)\} \\ &= \arg \max_{c \in Y} \frac {P(c)}{P(x)} \prod_{i=1}^{d}P(x_{i} | C) \\ &= \arg \max_{c \in Y} P(c) \prod_{i=1}^{d}P(x_{i} | C) \end{align} hnb(x)=max{P(c1∣x),P(c2∣x),P(c3∣x),...,P(cn∣x)}=argc∈YmaxP(x)P(c)i=1∏dP(xi∣C)=argc∈YmaxP(c)i=1∏dP(xi∣C) 令 D c D_{c} Dc 表示训练集 D D D 中第 c c c 类样本组成的集合,若有充足的独立同分布样本,则可以容易地估计出类别的先验概率:
P ( c ) = ∣ D c ∣ ∣ D ∣ P(c) = \frac {|D_{c}|}{|D|} P(c)=∣D∣∣Dc∣

对于离散属性而言,令 D c , x i D_{c, x_{i}} Dc,xi 表示 D c D_{c} Dc 中第 i i i 个属性上取值为 x i x_{i} xi 的样本组成的集合,则条件概率 P ( x i ∣ c ) P(x_{i} |c) P(xi∣c) 可估计为:
P x i ∣ c = ∣ D c , x i ∣ ∣ D c ∣ P{x_{i} | c} = \frac {|D_{c, x_{i}}|}{|D_{c}|} Pxi∣c=∣Dc∣∣Dc,xi∣

对于连续属性可考虑概率密度函数,假定 p ( x i ∣ c ) ∼ N ( μ c , i , σ c , i 2 ) p(x_{i}|c) \sim \mathcal{N}(\mu {c, i}, \sigma {c,i}^{2}) p(xi∣c)∼N(μc,i,σc,i2)d,其中 μ c , i \mu{c, i} μc,i和 σ c , i 2 \sigma{c, i}^{2} σc,i2分别是第 c c c 类样本在第 i i i 个属性上取值的均值和方差,则有:
p ( x i ∣ c ) = 1 2 π σ c , i exp ⁡ ( − ( x i − μ c , i ) 2 2 σ c , i 2 ) p(x_{i} | c) = \frac {1}{\sqrt{2 \pi} \sigma_{c, i}} \exp (- \frac {(x_{i}-\mu_{c, i})^2}{2 \sigma_{c, i}^{2}}) p(xi∣c)=2π σc,i1exp(−2σc,i2(xi−μc,i)2)

相关推荐
i爱校对16 小时前
爱校对团队服务全新升级
人工智能
KL1328815269316 小时前
AI 介绍的东西大概率是不会错的,包括这款酷铂达 VGS耳机
人工智能
vigel199016 小时前
人工智能的7大应用领域
人工智能
人工智能训练16 小时前
windows系统中的docker,xinference直接运行在容器目录和持载在宿主机目录中的区别
linux·服务器·人工智能·windows·ubuntu·docker·容器
飞扬的风信子16 小时前
RAG基础知识
机器学习
南蓝16 小时前
【AI 日记】调用大模型的时候如何按照 sse 格式输出
前端·人工智能
robot_learner16 小时前
11 月 AI 动态:多模态突破・智能体模型・开源浪潮・机器人仿真・AI 安全与主权 AI
人工智能·机器人·开源
Mintopia17 小时前
🌐 动态网络环境中 WebAIGC 的断点续传与容错技术
人工智能·aigc·trae
后端小张17 小时前
【AI 学习】从0到1深入理解Agent AI智能体:理论与实践融合指南
人工智能·学习·搜索引擎·ai·agent·agi·ai agent
Mintopia17 小时前
🧩 Claude Code Hooks 最佳实践指南
人工智能·claude·全栈