【深度学习】基于MXNet的多层感知机的实现

多层感知机

结构组成

大致由三层组成:输入层-隐藏层-输出层,其中隐藏层大于等于一层

其中,隐藏层和输出层都是全连接

隐藏层的层数和神经元个数也是超参数

多层隐藏层,在本质上仍等价于单层神经网络(可从输出方程简单推得),

但是增加网络的深度可以更加有效地提高网络对深层抽象概念的理解,降低训练难度

激活函数

目前Sigmoid函数正在被逐渐淘汰,目前仅在二分类问题上仍有用武之地

目前最主流的激活函数是ReLU函数及其变种,它使模型更加简单高效,没有梯度消失问题,对输入的敏感程度更高,迭代速度更快

具体实现

  • 完整版本
python 复制代码
import d2lzh as d2l
from mxnet import nd
from mxnet.gluon import loss as gloss

'''
基础准备工作
'''
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = nd.random.normal(scale=0.01, shape=(num_inputs, num_hiddens))      # 形状等于 输入*输出
b1 = nd.zeros(num_hiddens)
W2 = nd.random.normal(scale=0.01, shape=(num_hiddens, num_outputs))      # 形状等于 输入*输出
b2 = nd.zeros(num_outputs)
params = [W1, W2, b1, b2]
for param in params:
    param.attach_grad()     # 统一申请梯度空间
    
# 激活函数
def relu(X):
    return nd.maximum(X, 0)

# 模型
def net(X):
    # 一个图片样本正好转化成1*num_inputs的大小,不是巧合,就是要一次性把整张图片放进网络
    X = X.reshape((-1, num_inputs)) 
    H = relu(nd.dot(X, W1)+b1)      # 隐藏层需要应用激活函数
    return nd.dot(H, W2) + b2       # 输出层不需要用激活函数

# 损失
loss = gloss.SoftmaxCrossEntropyLoss()

'''
开始训练
'''
num_epochs, lr = 20, 0.2
d2l.train_ch3(net, test_iter, test_iter, loss, num_epochs, batch_size, params, lr)
  • 简化版本
python 复制代码
import d2lzh as d2l
from mxnet import gluon, init
from mxnet.gluon import loss as gloss, nn

net = nn.Sequential()
# 添加一层256个节点的全连接层,并使用ReLU激活函数
# 再添加一层10个节点的全连接层,不使用激活函数(输出层)
net.add(nn.Dense(256, activation='relu'), 
		nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

loss = gloss.SoftmaxCrossEntropyLoss()

trainer = gluon.Trainer(net.collect_params(), 'sgd', {"learning_rate": 0.2})
num_epochs = 20
d2l.train_ch3(net, test_iter, test_iter, loss, num_epochs, batch_size, None, None, trainer)

实际上只简化了训练器的构建,由此也可以发现,实现一个网络的训练是一件非常简单的事情,复杂的主要是训练前后的各种处理,训练只是手段,不是目的

注意事项

尝试将隐藏层的数量改成1024,再增加训练次数,此时可以发现,模型对训练集的误差一直在缩小,但是对测试集的误差不降反增,此时发生了过拟合

相关推荐
Moutai码农2 分钟前
机器学习-数据清洗(一)
人工智能·机器学习
notfindjob6 分钟前
deepseek API 调用-python
python·聊天机器人·deepseek
电商数据girl7 分钟前
【电商数据分析项目经验分享】数据采集——数据清洗——数据分析与可视化——数据决策”
大数据·开发语言·爬虫·python·信息可视化·数据分析·php
m0_7482507414 分钟前
Spring Boot + Spring AI快速体验
人工智能·spring boot·spring
Bran_Liu23 分钟前
【LeetCode 刷题】二叉树(6)-二叉搜索树的属性
数据结构·python·算法·leetcode
Elastic 中国社区官方博客33 分钟前
Elasticsearch 开放推理 API 增加了 Azure AI Studio 支持
大数据·数据库·人工智能·microsoft·ai·全文检索·azure
dreamer2336 分钟前
ChatGPT提问技巧:行业热门应用提示词案例--咨询法律知识
人工智能·chatgpt
追风201937 分钟前
本地化部署 AI 的第一步,认识和使用 ollama
人工智能
Chancezhou1 小时前
【Python 爬虫】同花顺请求头加密解密学习
爬虫·python
Chatopera 研发团队1 小时前
深度学习里面的而优化函数 Adam,SGD,动量法,AdaGrad 等 | PyTorch 深度学习实战
人工智能·pytorch·深度学习