【深度学习】基于MXNet的多层感知机的实现

多层感知机

结构组成

大致由三层组成:输入层-隐藏层-输出层,其中隐藏层大于等于一层

其中,隐藏层和输出层都是全连接

隐藏层的层数和神经元个数也是超参数

多层隐藏层,在本质上仍等价于单层神经网络(可从输出方程简单推得),

但是增加网络的深度可以更加有效地提高网络对深层抽象概念的理解,降低训练难度

激活函数

目前Sigmoid函数正在被逐渐淘汰,目前仅在二分类问题上仍有用武之地

目前最主流的激活函数是ReLU函数及其变种,它使模型更加简单高效,没有梯度消失问题,对输入的敏感程度更高,迭代速度更快

具体实现

  • 完整版本
python 复制代码
import d2lzh as d2l
from mxnet import nd
from mxnet.gluon import loss as gloss

'''
基础准备工作
'''
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = nd.random.normal(scale=0.01, shape=(num_inputs, num_hiddens))      # 形状等于 输入*输出
b1 = nd.zeros(num_hiddens)
W2 = nd.random.normal(scale=0.01, shape=(num_hiddens, num_outputs))      # 形状等于 输入*输出
b2 = nd.zeros(num_outputs)
params = [W1, W2, b1, b2]
for param in params:
    param.attach_grad()     # 统一申请梯度空间
    
# 激活函数
def relu(X):
    return nd.maximum(X, 0)

# 模型
def net(X):
    # 一个图片样本正好转化成1*num_inputs的大小,不是巧合,就是要一次性把整张图片放进网络
    X = X.reshape((-1, num_inputs)) 
    H = relu(nd.dot(X, W1)+b1)      # 隐藏层需要应用激活函数
    return nd.dot(H, W2) + b2       # 输出层不需要用激活函数

# 损失
loss = gloss.SoftmaxCrossEntropyLoss()

'''
开始训练
'''
num_epochs, lr = 20, 0.2
d2l.train_ch3(net, test_iter, test_iter, loss, num_epochs, batch_size, params, lr)
  • 简化版本
python 复制代码
import d2lzh as d2l
from mxnet import gluon, init
from mxnet.gluon import loss as gloss, nn

net = nn.Sequential()
# 添加一层256个节点的全连接层,并使用ReLU激活函数
# 再添加一层10个节点的全连接层,不使用激活函数(输出层)
net.add(nn.Dense(256, activation='relu'), 
		nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

loss = gloss.SoftmaxCrossEntropyLoss()

trainer = gluon.Trainer(net.collect_params(), 'sgd', {"learning_rate": 0.2})
num_epochs = 20
d2l.train_ch3(net, test_iter, test_iter, loss, num_epochs, batch_size, None, None, trainer)

实际上只简化了训练器的构建,由此也可以发现,实现一个网络的训练是一件非常简单的事情,复杂的主要是训练前后的各种处理,训练只是手段,不是目的

注意事项

尝试将隐藏层的数量改成1024,再增加训练次数,此时可以发现,模型对训练集的误差一直在缩小,但是对测试集的误差不降反增,此时发生了过拟合

相关推荐
Coder_Boy_5 分钟前
基于SpringAI的智能平台基座开发-(六)
java·数据库·人工智能·spring·langchain·langchain4j
泰迪智能科技019 分钟前
分享图书推荐 | 数字图像处理实战
人工智能·深度学习·计算机视觉
北京盟通科技官方账号16 分钟前
精准医疗的未来之一:EtherCAT携手实时解决方案助力医疗器械中的控制与传输
人工智能·机器人·自动化·健康医疗·制造
Rabbit_QL19 分钟前
【深度学习原理】数值稳定性(二):梯度是如何在深度网络中消失与爆炸的
人工智能·深度学习
如果你想拥有什么先让自己配得上拥有20 分钟前
数学思想和数学思维分别都有什么?
线性代数·算法·机器学习
core51221 分钟前
Adaboost (Adaptive Boosting):错题本上的逆袭
机器学习·adaboost·boosting
热爱专研AI的学妹26 分钟前
数眼搜索API与博查技术特性深度对比:实时性与数据完整性的核心差异
大数据·开发语言·数据库·人工智能·python
thinkerCoder30 分钟前
SmoothQuant:一种用于大型语言模型的准确高效的训练后量化方法
人工智能·语言模型·自然语言处理
HUI 别摸鱼了33 分钟前
【Gabor滤波】
人工智能
好奇龙猫39 分钟前
【AI学习-comfyUI学习-第二十四节-open(contorlnet多重处理)+图生图openpose-各个部分学习】
人工智能·学习