【深度学习】基于MXNet的多层感知机的实现

多层感知机

结构组成

大致由三层组成:输入层-隐藏层-输出层,其中隐藏层大于等于一层

其中,隐藏层和输出层都是全连接

隐藏层的层数和神经元个数也是超参数

多层隐藏层,在本质上仍等价于单层神经网络(可从输出方程简单推得),

但是增加网络的深度可以更加有效地提高网络对深层抽象概念的理解,降低训练难度

激活函数

目前Sigmoid函数正在被逐渐淘汰,目前仅在二分类问题上仍有用武之地

目前最主流的激活函数是ReLU函数及其变种,它使模型更加简单高效,没有梯度消失问题,对输入的敏感程度更高,迭代速度更快

具体实现

  • 完整版本
python 复制代码
import d2lzh as d2l
from mxnet import nd
from mxnet.gluon import loss as gloss

'''
基础准备工作
'''
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = nd.random.normal(scale=0.01, shape=(num_inputs, num_hiddens))      # 形状等于 输入*输出
b1 = nd.zeros(num_hiddens)
W2 = nd.random.normal(scale=0.01, shape=(num_hiddens, num_outputs))      # 形状等于 输入*输出
b2 = nd.zeros(num_outputs)
params = [W1, W2, b1, b2]
for param in params:
    param.attach_grad()     # 统一申请梯度空间
    
# 激活函数
def relu(X):
    return nd.maximum(X, 0)

# 模型
def net(X):
    # 一个图片样本正好转化成1*num_inputs的大小,不是巧合,就是要一次性把整张图片放进网络
    X = X.reshape((-1, num_inputs)) 
    H = relu(nd.dot(X, W1)+b1)      # 隐藏层需要应用激活函数
    return nd.dot(H, W2) + b2       # 输出层不需要用激活函数

# 损失
loss = gloss.SoftmaxCrossEntropyLoss()

'''
开始训练
'''
num_epochs, lr = 20, 0.2
d2l.train_ch3(net, test_iter, test_iter, loss, num_epochs, batch_size, params, lr)
  • 简化版本
python 复制代码
import d2lzh as d2l
from mxnet import gluon, init
from mxnet.gluon import loss as gloss, nn

net = nn.Sequential()
# 添加一层256个节点的全连接层,并使用ReLU激活函数
# 再添加一层10个节点的全连接层,不使用激活函数(输出层)
net.add(nn.Dense(256, activation='relu'), 
		nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

loss = gloss.SoftmaxCrossEntropyLoss()

trainer = gluon.Trainer(net.collect_params(), 'sgd', {"learning_rate": 0.2})
num_epochs = 20
d2l.train_ch3(net, test_iter, test_iter, loss, num_epochs, batch_size, None, None, trainer)

实际上只简化了训练器的构建,由此也可以发现,实现一个网络的训练是一件非常简单的事情,复杂的主要是训练前后的各种处理,训练只是手段,不是目的

注意事项

尝试将隐藏层的数量改成1024,再增加训练次数,此时可以发现,模型对训练集的误差一直在缩小,但是对测试集的误差不降反增,此时发生了过拟合

相关推荐
m0_748254664 分钟前
CSS AI 编程
前端·css·人工智能
tjjucheng4 分钟前
小程序定制开发公司排名
python
愚公搬代码8 分钟前
【愚公系列】《AI+直播营销》030-主播的选拔和人设设计(选拔匹配的主播)
人工智能
三不原则12 分钟前
故障案例:告警风暴处理,用 AI 实现告警聚合与降噪
人工智能
这张生成的图像能检测吗14 分钟前
(论文速读)GNS:学习用图网络模拟复杂物理
人工智能·图神经网络·物理模型
童话名剑19 分钟前
神经风格迁移(吴恩达深度学习笔记)
深度学习·机器学习·计算机视觉·特征检测·神经风格迁移
HySpark21 分钟前
基于语音转文字与语义分析的智能语音识别技术
人工智能·语音识别
Coder_Boy_25 分钟前
基于SpringAI的在线考试系统-考试模块前端页面交互设计及优化
java·数据库·人工智能·spring boot
276695829228 分钟前
dy bd-ticket-guard-client-data bd-ticket-guard-ree-public-key 逆向
前端·javascript·python·abogus·bd-ticket·mstoken·ticket-guard
Maddie_Mo32 分钟前
智能体设计模式 第一章:提示链
人工智能·python·语言模型·rag