llama_index

目录

安装

[llama_index 搜索引擎](#llama_index 搜索引擎)

[用 DeepSeek API 替换本地 Ollama 模型](#用 DeepSeek API 替换本地 Ollama 模型)

源代码:


安装

pip install llama_index

llama_index 搜索引擎

llama_index框架构建搜索引擎_llamaindex使用正则表达式拆分文档-CSDN博客

用 DeepSeek API 替换本地 Ollama 模型

https://zhuanlan.zhihu.com/p/842132629

源代码:

python 复制代码
# %%
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from IPython.display import Markdown, display

from llama_index.llms.openai import OpenAI
import chromadb

# %%

import openai
openai.api_key = "sk"

openai.api_base = "https://api.deepseek.com/v1"
llm = OpenAI(model='deepseek-chat',api_key=openai.api_key, base_url=openai.base_url)


from llama_index.core import Settings


# llm = OpenAI(api_key=openai.api_key, base_url=openai.base_url)
Settings.llm = OpenAI(model="deepseek-chat",api_key=openai.api_key, base_url=openai.base_url)
# %%
import os

jinaai_api_key = "jina"
os.environ["JINAAI_API_KEY"] = jinaai_api_key

from llama_index.embeddings.jinaai import JinaEmbedding

text_embed_model = JinaEmbedding(
    api_key=jinaai_api_key,
    model="jina-embeddings-v3",
    # choose `retrieval.passage` to get passage embeddings
    task="retrieval.passage",
)

# %%
# create client and a new collection
chroma_client = chromadb.EphemeralClient()
chroma_collection = chroma_client.create_collection("quickstart")

# %%


# define embedding function
embed_model = text_embed_model

# load documents
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()

# save to disk

db = chromadb.PersistentClient(path="./chroma_db")
chroma_collection = db.get_or_create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)

index = VectorStoreIndex.from_documents(
    documents, storage_context=storage_context, embed_model=embed_model
)

# load from disk
db2 = chromadb.PersistentClient(path="./chroma_db")
chroma_collection = db2.get_or_create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
index = VectorStoreIndex.from_vector_store(
    vector_store,
    embed_model=embed_model,
)

# Query Data from the persisted index
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print('response:',response)
相关推荐
CLubiy1 分钟前
【研究生随笔】PyTorch中的概率论
人工智能·pytorch·深度学习·概率论
m0_6265352015 分钟前
力扣题目练习 换水问题
python·算法·leetcode
第六五18 分钟前
DPC和DPC-KNN算法
人工智能·算法·机器学习
Xxtaoaooo20 分钟前
OCR文字识别前沿:PaddleOCR/DBNet++的端到端文本检测与识别
人工智能·ai·ocr·文本检测·dbnet++
taxunjishu21 分钟前
DeviceNet 转 MODBUS TCP:倍福 CX 系列 PLC 与 MES 系统在 SMT 回流焊温度曲线监控的通讯配置案例
运维·人工智能·物联网·自动化·区块链
软件技术NINI27 分钟前
MATLAB疑难诊疗:从调试到优化的全攻略
javascript·css·python·html
小烤箱28 分钟前
自动驾驶工程师面试(定位、感知向)
人工智能·面试·自动驾驶
IT_陈寒30 分钟前
《Redis性能翻倍的7个冷门技巧,90%开发者都不知道!》
前端·人工智能·后端
龙俊杰的读书笔记44 分钟前
《小白学随机过程》第一章:随机过程——定义和形式 (附录1 探究随机变量)
人工智能·机器学习·概率论·随机过程和rl
Q_Q19632884751 小时前
python+uniapp基于微信小程序的助眠小程序
spring boot·python·小程序·django·flask·uni-app·node.js