llama_index

目录

安装

[llama_index 搜索引擎](#llama_index 搜索引擎)

[用 DeepSeek API 替换本地 Ollama 模型](#用 DeepSeek API 替换本地 Ollama 模型)

源代码:


安装

pip install llama_index

llama_index 搜索引擎

llama_index框架构建搜索引擎_llamaindex使用正则表达式拆分文档-CSDN博客

用 DeepSeek API 替换本地 Ollama 模型

https://zhuanlan.zhihu.com/p/842132629

源代码:

python 复制代码
# %%
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from IPython.display import Markdown, display

from llama_index.llms.openai import OpenAI
import chromadb

# %%

import openai
openai.api_key = "sk"

openai.api_base = "https://api.deepseek.com/v1"
llm = OpenAI(model='deepseek-chat',api_key=openai.api_key, base_url=openai.base_url)


from llama_index.core import Settings


# llm = OpenAI(api_key=openai.api_key, base_url=openai.base_url)
Settings.llm = OpenAI(model="deepseek-chat",api_key=openai.api_key, base_url=openai.base_url)
# %%
import os

jinaai_api_key = "jina"
os.environ["JINAAI_API_KEY"] = jinaai_api_key

from llama_index.embeddings.jinaai import JinaEmbedding

text_embed_model = JinaEmbedding(
    api_key=jinaai_api_key,
    model="jina-embeddings-v3",
    # choose `retrieval.passage` to get passage embeddings
    task="retrieval.passage",
)

# %%
# create client and a new collection
chroma_client = chromadb.EphemeralClient()
chroma_collection = chroma_client.create_collection("quickstart")

# %%


# define embedding function
embed_model = text_embed_model

# load documents
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()

# save to disk

db = chromadb.PersistentClient(path="./chroma_db")
chroma_collection = db.get_or_create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)

index = VectorStoreIndex.from_documents(
    documents, storage_context=storage_context, embed_model=embed_model
)

# load from disk
db2 = chromadb.PersistentClient(path="./chroma_db")
chroma_collection = db2.get_or_create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
index = VectorStoreIndex.from_vector_store(
    vector_store,
    embed_model=embed_model,
)

# Query Data from the persisted index
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print('response:',response)
相关推荐
北邮刘老师11 分钟前
【智能体协议解析】一个完整的智能体互联协作流程
人工智能·大模型·智能体·智能体互联网
新华经济20 分钟前
合规+AI双驱动,Decode Global 2025重构全球服务新生态
人工智能·重构·区块链
IT老兵202528 分钟前
PyTorch DDP多GPU训练实践问题总结
人工智能·pytorch·python·分布式训练·ddp
破烂pan32 分钟前
2025年下半年AI应用架构演进:从RAG到Agent再到MCP的生态跃迁
人工智能·架构·ai应用
9527(●—●)44 分钟前
windows系统python开发pip命令使用(菜鸟学习)
开发语言·windows·python·学习·pip
数字会议深科技1 小时前
深科技 | 高端会议室效率升级指南:无纸化会议系统的演进与价值
大数据·人工智能·会议系统·无纸化·会议系统品牌·综合型系统集成商·会议室
曦云沐1 小时前
轻量却强大:Fun-ASR-Nano-2512 语音识别模型上手指南
人工智能·语音识别·asr·fun-asr-nano
森叶1 小时前
手搓一个 Windows 注册表清理器:从开发到 EXE 打包全流程
windows·python
少年白char1 小时前
【AI漫剧】开源自动化AI漫剧生成工具 - 从文字到影像:AI故事视频创作的全新可能
运维·人工智能·自动化
容智信息1 小时前
容智Report Agent智能体驱动财务自动化,从核算迈向价值创造
大数据·运维·人工智能·自然语言处理·自动化·政务