C#+halcon机器视觉九点标定算法

在机器视觉中,九点标定(也称为九点标定法)是一种常用的方法,用于将图像坐标系与物理坐标系进行映射。通过标定,可以将图像中的像素坐标转换为实际物理坐标,或者反之。下面是一个使用C#和Halcon进行九点标定的示例代码。

1. 准备工作

首先,确保你已经安装了Halcon库,并且在C#项目中引用了Halcon的DLL文件。

2. 代码实现

cs 复制代码
using System;
using HalconDotNet;

namespace NinePointCalibration
{
    class Program
    {
        static void Main(string[] args)
        {
            try
            {
                // 初始化Halcon库
                HOperatorSet.GenEmptyObj(out HObject image);
                HOperatorSet.GenEmptyObj(out HObject region);

                // 假设你已经有了9个点的图像坐标和对应的物理坐标
                // 图像坐标 (Row, Column)
                double[] imageRows = { 100, 150, 200, 100, 150, 200, 100, 150, 200 };
                double[] imageCols = { 100, 100, 100, 150, 150, 150, 200, 200, 200 };

                // 物理坐标 (X, Y)
                double[] worldX = { 10, 10, 10, 20, 20, 20, 30, 30, 30 };
                double[] worldY = { 10, 20, 30, 10, 20, 30, 10, 20, 30 };

                // 创建Halcon的标定数据
                HTuple homMat2D;
                HOperatorSet.VectorToHomMat2d(
                    new HTuple(imageRows), new HTuple(imageCols),
                    new HTuple(worldX), new HTuple(worldY),
                    out homMat2D);

                // 标定完成后,可以使用homMat2D进行坐标转换
                // 例如,将图像坐标 (150, 150) 转换为物理坐标
                double testRow = 150;
                double testCol = 150;
                HTuple worldXResult, worldYResult;
                HOperatorSet.AffineTransPoint2d(homMat2D, testRow, testCol, out worldXResult, out worldYResult);

                Console.WriteLine($"图像坐标 ({testRow}, {testCol}) 对应的物理坐标为 ({worldXResult}, {worldYResult})");

                // 释放资源
                image.Dispose();
                region.Dispose();
            }
            catch (HOperatorException ex)
            {
                Console.WriteLine("Halcon异常: " + ex.Message);
            }
            catch (Exception ex)
            {
                Console.WriteLine("异常: " + ex.Message);
            }
        }
    }
}

3. 代码说明

  • 图像坐标和物理坐标:你需要提供9个点的图像坐标和对应的物理坐标。这些点通常是通过标定板或其他标定工具获取的。

  • VectorToHomMat2d :这个函数用于计算从图像坐标到物理坐标的2D仿射变换矩阵(homMat2D)。

  • AffineTransPoint2d:这个函数用于将图像坐标转换为物理坐标。

4. 运行结果

运行代码后,程序会输出图像坐标 (150, 150) 对应的物理坐标。你可以根据需要修改测试点的坐标。

5. 注意事项

  • 确保提供的9个点在图像和物理坐标系中分布均匀,以获得更准确的标定结果。

  • 标定过程中,图像和物理坐标的单位需要一致(例如,毫米、厘米等)。

6. 扩展

你可以根据需要扩展代码,例如添加图像加载、标定板检测等功能,以实现更复杂的机器视觉应用。

相关推荐
pchmi25 分钟前
C# OpenCV机器视觉:学生注意力监测
开发语言·opencv·c#
BuHuaX3 小时前
C#元组和Unity Vector3
开发语言·unity·c#·游戏引擎·全文检索
Conmi·白小丑3 小时前
Conmi的正确答案——Rider中添加icon作为exe的图标
c#·rider
web182854825124 小时前
[入门一]C# webApi创建、与发布、部署、api调用
开发语言·c#
橙子家czzj6 小时前
DES & 3DES 简介 以及 C# 和 js 实现【加密知多少系列_2】
javascript·elasticsearch·c#
步、步、为营7 小时前
C# foreach循环:性能提升
windows·c#·.net
ou.cs8 小时前
c# Lazy<T>单例模式 - 延迟初始化单例实例示例与详解
单例模式·c#
hhw1991129 小时前
.net的一些知识点6
javascript·c#·.net