算法与数据结构(爬楼梯)

题目

思路

这道题我们可以使用动态规划。

用f(x)代表爬到第x级台阶的方案数,爬到x级台阶只有两种方法,一种是从前一层(x-1)爬一层台阶或从前两层(x-2)爬两级台阶即可。

f(x) = f(x-1)+f(x-2)

它意味着到x层台阶的方案数等于到x-1层和x-2层之和,很好理解。因为每次只能爬一个或两个台阶,所以f(x)只能从f(x-1)和f(x-2)转移来,因为要求方案总数,所以就对两边求和。

解题过程

首先列出特殊情况:0,1,2

接着定义一个数组f

f[0]代表一层台阶的方案数

f[1]代表两层台阶的方案数

i从2开始循环,说明从第三层台阶开始算,爬到第三层的方案数等于爬到第一层与爬到第二层方案数的总和。最后f[n-1]即为爬到最后一层台阶的方案数

代码

cpp 复制代码
class Solution {
public:
    int climbStairs(int n) {
        if(n == 0) return 0;
        if(n == 1) return 1;
        if(n == 2) return 2;
        //从三楼开始,只有两种上楼方式,从前一层爬一楼或者从前两层爬两楼
        //可以推出f(n) = f(n-1)+f(n-2)
        vector<int> f(n);
        f[0] = 1;
        f[1] = 2;
        for(int i=2;i<n;i++)
        {
            f[i] = f[i-1] + f[i-2];
        }
        return f[n-1];
    }
};

优化

这个题的时间复杂度是O(N),空间复杂度也是O(N),因为创建了一个空间为n的数组。

因为f(x)只与f(x-1)和f(x-2)有关,所以我们可以用p代表f[0],q代表f[1],r代表f[i]。

利用滚动数组的思想将空间复杂度降为1。

不断改变p,q,r的值将数组向前推移

cpp 复制代码
 int p = 1;

        int q = 2;

        int r = 0;

        for(int i=2;i<n;i++)

        {

            r = p + q;

            p = q;

            q = r;

        }

        return r;
相关推荐
ゞ 正在缓冲99%…8 分钟前
leetcode1771.由子序列构造的最长回文串长度
数据结构·算法·leetcode
多喝开水少熬夜25 分钟前
堆相关算法题基础-java实现
java·开发语言·算法
锂享生活29 分钟前
论文阅读:铁路车辆跨临界 CO₂ 空调系统模型预测控制(MPC)策略
论文阅读·算法
B站_计算机毕业设计之家37 分钟前
深度学习:Yolo水果检测识别系统 深度学习算法 pyqt界面 训练集测试集 深度学习 数据库 大数据 (建议收藏)✅
数据库·人工智能·python·深度学习·算法·yolo·pyqt
骑自行车的码农1 小时前
React SSR 技术实现原理
算法·react.js
盘古开天16661 小时前
深度强化学习算法详解:从理论到实践
算法
Mr.H01272 小时前
快速排序的常见构思
数据结构·算法
mit6.8242 小时前
背包dp|格雷码
算法
rit84324992 小时前
基于MATLAB的PCA+SVM人脸识别系统实现
人工智能·算法
RTC老炮2 小时前
webrtc降噪-NoiseEstimator类源码分析与算法原理
算法·webrtc