pytorch 不同版本之间的模型参数不通用,高版本的模型参数不能用在低版本中,torch2.4 保存的模型参数 无法在1.10倒入

从错误信息来看,问题的核心是 **模型参数形状不匹配**。具体来说,保存的模型参数(checkpoint)中的某些张量形状与当前模型的期望形状不一致。例如:

  • `tcn.net.0.conv1.weight_v` 的期望形状是 `[64, 32, 7]`,但 checkpoint 中的形状是 `[64, 27, 7]`。

  • 其他参数(如 `tcn.net.0.net.0.weight_v` 和 `tcn.net.0.downsample.weight`)也存在类似的形状不匹配问题。


可能的原因

  1. **模型结构发生变化**:
  • 你在训练模型时使用的输入数据维度(如特征数)与当前预测时使用的输入数据维度不一致。

  • 例如,训练时输入的特征数是 27,而预测时输入的特征数是 32。

  1. **模型定义不一致**:
  • 训练时使用的模型定义与预测时使用的模型定义不同,导致参数形状不匹配。
  1. **Checkpoint 文件不匹配**:
  • 加载的 checkpoint 文件可能不是当前模型的权重文件,而是其他模型的权重文件。

解决方法

1. **检查输入数据的特征数**

  • 确保训练和预测时输入数据的特征数一致。

  • 例如,如果训练时输入的特征数是 27,而预测时输入的特征数是 32,则需要调整输入数据或模型定义。

2. **检查模型定义**

  • 确保训练和预测时使用的模型定义完全一致。

  • 检查 `TCNAttentionLSTM` 模型的代码,确认 `tcn.net.0.conv1.weight_v` 等参数的形状是否与 checkpoint 中的形状匹配。

3. **调整模型参数形状**

  • 如果输入数据的特征数确实发生了变化(例如从 27 变为 32),则需要调整模型定义以匹配新的输入形状。

  • 例如,修改 `TCNAttentionLSTM` 模型中的卷积层输入通道数:

```python

self.conv1 = nn.Conv1d(in_channels=32, out_channels=64, kernel_size=7)

```

4. **重新训练模型**

  • 如果输入数据的特征数发生了变化,且无法通过调整模型定义解决,则需要使用新的输入数据重新训练模型。

5. **检查 Checkpoint 文件**

  • 确保加载的 checkpoint 文件是正确的,并且与当前模型匹配。

  • 如果 checkpoint 文件来自其他模型,则需要使用正确的 checkpoint 文件。


示例代码:检查模型参数形状

你可以打印模型的参数形状和 checkpoint 中的参数形状,进行对比:

```python

打印当前模型的参数形状

print("Current model state_dict:")

for name, param in model.state_dict().items():

print(name, param.shape)

打印 checkpoint 中的参数形状

checkpoint = torch.load('model_checkpoint.pth', map_location=device)

print("Checkpoint state_dict:")

for name, param in checkpoint.items():

print(name, param.shape)

```


总结

  • 问题的核心是模型参数形状不匹配,可能是由于输入数据特征数或模型定义不一致导致的。

  • 解决方法包括检查输入数据、调整模型定义、重新训练模型或使用正确的 checkpoint 文件。

如果仍然无法解决问题,请提供更多上下文信息(如模型定义、输入数据的形状等),我可以进一步帮助你分析问题!

相关推荐
AIGCmitutu3 小时前
PS 物体底部阴影怎么做?3 步做出自然逼真的投影效果
人工智能·电子商务·photoshop·ps·美工
开源技术3 小时前
Claude Opus 4.6 发布,100万上下文窗口,越贵越好用
人工智能·python
聆风吟º4 小时前
CANN hccl 深度解析:异构计算集群通信库的跨节点通信与资源管控实现逻辑
人工智能·wpf·transformer·cann
狸奴算君4 小时前
告别机械回复:三步微调AI模型,打造会“读心”的智能客服
人工智能
七夜zippoe4 小时前
脉向AI|当豆包手机遭遇“全网封杀“:GUI Agent是通向AGI的必经之路吗?
人工智能·ai·智能手机·agent·gui
木非哲4 小时前
机器学习--随机森林--从一棵树的直觉到一片林的哲学
人工智能·随机森林·机器学习
神的泪水4 小时前
CANN 系列底层篇:基于 shmem 实现 NPU 设备内存的高效共享
人工智能
皮卡丘不断更4 小时前
手搓本地 RAG:我用 Python 和 Spring Boot 给 AI 装上了“实时代码监控”
人工智能·spring boot·python·ai编程
浪子小院4 小时前
ModelEngine 智能体全流程开发实战:从 0 到 1 搭建多协作办公助手
大数据·人工智能
程序员打怪兽4 小时前
详解YOLOv8网络结构
人工智能·深度学习