R包:ggalign调整和组合多个图形的R包

文章目录

介绍

这个包扩展了ggplot2,提供了用于对齐和组织多个图的高级工具,特别是那些自动重新排序观察结果的工具,比如树形图。它提供了对布局调整和情节注释的精细控制,使您能够创建复杂的、出版质量的可视化,同时仍然使用熟悉的ggplot2语法。

This package extends ggplot2 by providing advanced tools for aligning and organizing multiple plots, particularly those that automatically reorder observations, such as dendrogram. It offers fine control over layout adjustment and plot annotations, enabling you to create complex, publication-quality visualizations while still using the familiar grammar of ggplot2.

案例

安装R包

r 复制代码
install.packages("ggalign")

install.packages("ggalign",
    repos = c("https://yunuuuu.r-universe.dev", "https://cloud.r-project.org")
)

# install.packages("remotes")
remotes::install_github("Yunuuuu/ggalign")

教程1

r 复制代码
library(ggalign)

expr <- read_example("gene_expression.rds")
mat <- as.matrix(expr[, grep("cell", colnames(expr))])
base_mean <- rowMeans(mat)
mat_scaled <- t(apply(mat, 1, scale))
type <- gsub("s\\d+_", "", colnames(mat))

heat1 <- ggheatmap(mat_scaled) -
    scheme_align(free_spaces = "l") +
    scale_y_continuous(breaks = NULL) +
    scale_fill_viridis_c(option = "magma") +
    # add dendrogram for this heatmap
    anno_top() +
    align_dendro() +
    # add a block for the heatmap column
    ggalign(data = type, size = unit(1, "cm")) +
    geom_tile(aes(y = 1, fill = factor(value))) +
    scale_y_continuous(breaks = NULL, name = NULL) +
    scale_fill_brewer(
        palette = "Set1", name = "type",
        guide = guide_legend(position = "top")
    )

heat2 <- ggheatmap(base_mean, width = unit(2, "cm")) +
    scale_y_continuous(breaks = NULL) +
    scale_x_continuous(name = "base mean", breaks = FALSE) +
    scale_fill_gradientn(colours = c("#2600D1FF", "white", "#EE3F3FFF")) +
    # set the active context of the heatmap to the top
    # and set the size of the top stack
    anno_top(size = unit(4, "cm")) +
    # add box plot in the heatmap top
    ggalign() +
    geom_boxplot(aes(y = value, fill = factor(.extra_panel))) +
    scale_x_continuous(expand = expansion(), breaks = NULL) +
    scale_fill_brewer(
        palette = "Dark2", name = "base mean",
        guide = guide_legend(position = "top")
    ) +
    theme(axis.title.y = element_blank())

heat3 <- ggheatmap(expr$type, width = unit(2, "cm")) +
    scale_fill_brewer(palette = "Set3", name = "gene type") +
    scale_x_continuous(breaks = NULL, name = "gene type") +
    # add barplot in the top annotation, and remove the spaces in the y-axis
    anno_top() -
    scheme_align(free_spaces = "lr") +
    ggalign() +
    geom_bar(
        aes(.extra_panel, fill = factor(value)),
        position = position_fill()
    ) +
    scale_y_continuous(expand = expansion()) +
    scale_fill_brewer(palette = "Set3", name = "gene type", guide = "none") -
    scheme_theme(plot.margin = margin())

stack_alignh(mat_scaled) +
    stack_active(sizes = c(0.2, 1, 1)) +
    # group stack rows into 5 groups
    align_kmeans(centers = 5L) +
    # add a block plot for each group in the stack
    ggalign(size = unit(1, "cm"), data = NULL) +
    geom_tile(aes(x = 1, fill = factor(.panel))) +
    scale_fill_brewer(palette = "Dark2", name = "Kmeans group") +
    scale_x_continuous(breaks = NULL, name = NULL) +
    # add a heatmap plot in the stack
    heat1 +
    # add another heatmap in the stack
    heat2 +
    # we move into the stack layout
    stack_active() +
    # add a point plot
    ggalign(data = expr$length, size = unit(2, "cm")) +
    geom_point(aes(x = value)) +
    labs(x = "length") +
    theme(
        panel.border = element_rect(fill = NA),
        axis.text.x = element_text(angle = -60, hjust = 0)
    ) +
    # add another heatmap
    heat3 &
    theme(
        plot.background = element_blank(),
        panel.background = element_blank(),
        legend.background = element_blank()
    )

教程2

r 复制代码
mat <- read_example("measles.rds")
ggheatmap(mat, filling = FALSE) +
    geom_tile(aes(fill = value), color = "white") +
    scale_fill_gradientn(
        colours = c("white", "cornflowerblue", "yellow", "red"),
        values = scales::rescale(c(0, 800, 1000, 127000), c(0, 1))
    ) +
    theme(axis.text.x = element_text(angle = -60, hjust = 0)) +
    anno_right() +
    align_dendro(plot_dendrogram = FALSE) +
    anno_top(size = unit(2, "cm")) +
    ggalign(data = rowSums) +
    geom_bar(aes(y = value), fill = "#FFE200", stat = "identity") +
    scale_y_continuous(expand = expansion()) +
    ggtitle("Measles cases in US states 1930-2001\nVaccine introduced 1961") +
    theme(plot.title = element_text(hjust = 0.5)) +
    anno_right(size = unit(2, "cm")) +
    ggalign(data = rowSums) +
    geom_bar(aes(x = value),
        fill = "#FFE200", stat = "identity",
        orientation = "y"
    ) +
    scale_x_continuous(expand = expansion()) +
    theme(axis.text.x = element_text(angle = -60, hjust = 0))

参考

相关推荐
爱分享的飘哥16 小时前
第十九篇 自动化报表生成:Python一键生成可视化Excel图表与专业PDF报告,老板看了都点赞!
自动化·办公自动化·数据可视化·excel自动化·python报表·pdf报告
医工交叉实验工坊17 小时前
R 语言绘制 10 种精美火山图:转录组差异基因可视化
python·信息可视化·r语言
银之夏雪丶17 小时前
AntV G6 基础元素详解(React版)
前端·javascript·数据可视化
智算菩萨17 小时前
传统机器学习在信用卡交易预测中的卓越表现:从R²=-0.0075到1.0000的华丽转身
人工智能·机器学习·r语言
大数据魔法师1 天前
Matplotlib(一)- 数据可视化与Matplotlib
matplotlib·数据可视化
2201_753054892 天前
应用回归分析,R语言,多元线性回归总结(下)
回归·r语言·线性回归
李昊哲小课3 天前
销售数据可视化分析项目
python·信息可视化·数据分析·matplotlib·数据可视化·seaborn
LabEx4 天前
科研数据可视化核心技术:基于 AI 与 R 语言的热图、火山图及网络图绘制实践指南
人工智能·信息可视化·r语言·r语言绘图·乐备实·labex·科研数据绘图
Jet45055 天前
第100+43步 ChatGPT学习:R语言实现特征选择曲线图
学习·chatgpt·r语言
Chef_Chen5 天前
从0开始学习R语言--Day40--Kruskal-Wallis检验
开发语言·学习·r语言