R包:ggalign调整和组合多个图形的R包

文章目录

介绍

这个包扩展了ggplot2,提供了用于对齐和组织多个图的高级工具,特别是那些自动重新排序观察结果的工具,比如树形图。它提供了对布局调整和情节注释的精细控制,使您能够创建复杂的、出版质量的可视化,同时仍然使用熟悉的ggplot2语法。

This package extends ggplot2 by providing advanced tools for aligning and organizing multiple plots, particularly those that automatically reorder observations, such as dendrogram. It offers fine control over layout adjustment and plot annotations, enabling you to create complex, publication-quality visualizations while still using the familiar grammar of ggplot2.

案例

安装R包

r 复制代码
install.packages("ggalign")

install.packages("ggalign",
    repos = c("https://yunuuuu.r-universe.dev", "https://cloud.r-project.org")
)

# install.packages("remotes")
remotes::install_github("Yunuuuu/ggalign")

教程1

r 复制代码
library(ggalign)

expr <- read_example("gene_expression.rds")
mat <- as.matrix(expr[, grep("cell", colnames(expr))])
base_mean <- rowMeans(mat)
mat_scaled <- t(apply(mat, 1, scale))
type <- gsub("s\\d+_", "", colnames(mat))

heat1 <- ggheatmap(mat_scaled) -
    scheme_align(free_spaces = "l") +
    scale_y_continuous(breaks = NULL) +
    scale_fill_viridis_c(option = "magma") +
    # add dendrogram for this heatmap
    anno_top() +
    align_dendro() +
    # add a block for the heatmap column
    ggalign(data = type, size = unit(1, "cm")) +
    geom_tile(aes(y = 1, fill = factor(value))) +
    scale_y_continuous(breaks = NULL, name = NULL) +
    scale_fill_brewer(
        palette = "Set1", name = "type",
        guide = guide_legend(position = "top")
    )

heat2 <- ggheatmap(base_mean, width = unit(2, "cm")) +
    scale_y_continuous(breaks = NULL) +
    scale_x_continuous(name = "base mean", breaks = FALSE) +
    scale_fill_gradientn(colours = c("#2600D1FF", "white", "#EE3F3FFF")) +
    # set the active context of the heatmap to the top
    # and set the size of the top stack
    anno_top(size = unit(4, "cm")) +
    # add box plot in the heatmap top
    ggalign() +
    geom_boxplot(aes(y = value, fill = factor(.extra_panel))) +
    scale_x_continuous(expand = expansion(), breaks = NULL) +
    scale_fill_brewer(
        palette = "Dark2", name = "base mean",
        guide = guide_legend(position = "top")
    ) +
    theme(axis.title.y = element_blank())

heat3 <- ggheatmap(expr$type, width = unit(2, "cm")) +
    scale_fill_brewer(palette = "Set3", name = "gene type") +
    scale_x_continuous(breaks = NULL, name = "gene type") +
    # add barplot in the top annotation, and remove the spaces in the y-axis
    anno_top() -
    scheme_align(free_spaces = "lr") +
    ggalign() +
    geom_bar(
        aes(.extra_panel, fill = factor(value)),
        position = position_fill()
    ) +
    scale_y_continuous(expand = expansion()) +
    scale_fill_brewer(palette = "Set3", name = "gene type", guide = "none") -
    scheme_theme(plot.margin = margin())

stack_alignh(mat_scaled) +
    stack_active(sizes = c(0.2, 1, 1)) +
    # group stack rows into 5 groups
    align_kmeans(centers = 5L) +
    # add a block plot for each group in the stack
    ggalign(size = unit(1, "cm"), data = NULL) +
    geom_tile(aes(x = 1, fill = factor(.panel))) +
    scale_fill_brewer(palette = "Dark2", name = "Kmeans group") +
    scale_x_continuous(breaks = NULL, name = NULL) +
    # add a heatmap plot in the stack
    heat1 +
    # add another heatmap in the stack
    heat2 +
    # we move into the stack layout
    stack_active() +
    # add a point plot
    ggalign(data = expr$length, size = unit(2, "cm")) +
    geom_point(aes(x = value)) +
    labs(x = "length") +
    theme(
        panel.border = element_rect(fill = NA),
        axis.text.x = element_text(angle = -60, hjust = 0)
    ) +
    # add another heatmap
    heat3 &
    theme(
        plot.background = element_blank(),
        panel.background = element_blank(),
        legend.background = element_blank()
    )

教程2

r 复制代码
mat <- read_example("measles.rds")
ggheatmap(mat, filling = FALSE) +
    geom_tile(aes(fill = value), color = "white") +
    scale_fill_gradientn(
        colours = c("white", "cornflowerblue", "yellow", "red"),
        values = scales::rescale(c(0, 800, 1000, 127000), c(0, 1))
    ) +
    theme(axis.text.x = element_text(angle = -60, hjust = 0)) +
    anno_right() +
    align_dendro(plot_dendrogram = FALSE) +
    anno_top(size = unit(2, "cm")) +
    ggalign(data = rowSums) +
    geom_bar(aes(y = value), fill = "#FFE200", stat = "identity") +
    scale_y_continuous(expand = expansion()) +
    ggtitle("Measles cases in US states 1930-2001\nVaccine introduced 1961") +
    theme(plot.title = element_text(hjust = 0.5)) +
    anno_right(size = unit(2, "cm")) +
    ggalign(data = rowSums) +
    geom_bar(aes(x = value),
        fill = "#FFE200", stat = "identity",
        orientation = "y"
    ) +
    scale_x_continuous(expand = expansion()) +
    theme(axis.text.x = element_text(angle = -60, hjust = 0))

参考

相关推荐
不同的了然3 小时前
如何使用 patchwork 包
数据可视化
一个何包蛋!!1 天前
相关类相关的可视化图像总结
开发语言·python·数据可视化
南瓜胖胖1 天前
【R语言编程——数据调用】
开发语言·r语言
Biomamba生信基地2 天前
R语言基础| 下载、安装
开发语言·r语言·生信·医药
weixin_505154462 天前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
Chef_Chen2 天前
从0开始学习R语言--Day20-ARIMA与格兰杰因果检验
开发语言·学习·r语言
捷码小编3 天前
数据可视化大屏案例落地实战指南:捷码平台7天交付方法论
低代码·数字孪生·数据可视化
捷码小编3 天前
如何选择专业数据可视化开发工具?为您拆解捷码全功能和落地指南!
低代码·数字孪生·数据可视化
善木科研4 天前
读文献先读图:GO弦图怎么看?
机器学习·数据分析·r语言
Tiger Z4 天前
R 语言科研绘图第 55 期 --- 网络图-聚类
开发语言·r语言·贴图