R包:ggalign调整和组合多个图形的R包

文章目录

介绍

这个包扩展了ggplot2,提供了用于对齐和组织多个图的高级工具,特别是那些自动重新排序观察结果的工具,比如树形图。它提供了对布局调整和情节注释的精细控制,使您能够创建复杂的、出版质量的可视化,同时仍然使用熟悉的ggplot2语法。

This package extends ggplot2 by providing advanced tools for aligning and organizing multiple plots, particularly those that automatically reorder observations, such as dendrogram. It offers fine control over layout adjustment and plot annotations, enabling you to create complex, publication-quality visualizations while still using the familiar grammar of ggplot2.

案例

安装R包

r 复制代码
install.packages("ggalign")

install.packages("ggalign",
    repos = c("https://yunuuuu.r-universe.dev", "https://cloud.r-project.org")
)

# install.packages("remotes")
remotes::install_github("Yunuuuu/ggalign")

教程1

r 复制代码
library(ggalign)

expr <- read_example("gene_expression.rds")
mat <- as.matrix(expr[, grep("cell", colnames(expr))])
base_mean <- rowMeans(mat)
mat_scaled <- t(apply(mat, 1, scale))
type <- gsub("s\\d+_", "", colnames(mat))

heat1 <- ggheatmap(mat_scaled) -
    scheme_align(free_spaces = "l") +
    scale_y_continuous(breaks = NULL) +
    scale_fill_viridis_c(option = "magma") +
    # add dendrogram for this heatmap
    anno_top() +
    align_dendro() +
    # add a block for the heatmap column
    ggalign(data = type, size = unit(1, "cm")) +
    geom_tile(aes(y = 1, fill = factor(value))) +
    scale_y_continuous(breaks = NULL, name = NULL) +
    scale_fill_brewer(
        palette = "Set1", name = "type",
        guide = guide_legend(position = "top")
    )

heat2 <- ggheatmap(base_mean, width = unit(2, "cm")) +
    scale_y_continuous(breaks = NULL) +
    scale_x_continuous(name = "base mean", breaks = FALSE) +
    scale_fill_gradientn(colours = c("#2600D1FF", "white", "#EE3F3FFF")) +
    # set the active context of the heatmap to the top
    # and set the size of the top stack
    anno_top(size = unit(4, "cm")) +
    # add box plot in the heatmap top
    ggalign() +
    geom_boxplot(aes(y = value, fill = factor(.extra_panel))) +
    scale_x_continuous(expand = expansion(), breaks = NULL) +
    scale_fill_brewer(
        palette = "Dark2", name = "base mean",
        guide = guide_legend(position = "top")
    ) +
    theme(axis.title.y = element_blank())

heat3 <- ggheatmap(expr$type, width = unit(2, "cm")) +
    scale_fill_brewer(palette = "Set3", name = "gene type") +
    scale_x_continuous(breaks = NULL, name = "gene type") +
    # add barplot in the top annotation, and remove the spaces in the y-axis
    anno_top() -
    scheme_align(free_spaces = "lr") +
    ggalign() +
    geom_bar(
        aes(.extra_panel, fill = factor(value)),
        position = position_fill()
    ) +
    scale_y_continuous(expand = expansion()) +
    scale_fill_brewer(palette = "Set3", name = "gene type", guide = "none") -
    scheme_theme(plot.margin = margin())

stack_alignh(mat_scaled) +
    stack_active(sizes = c(0.2, 1, 1)) +
    # group stack rows into 5 groups
    align_kmeans(centers = 5L) +
    # add a block plot for each group in the stack
    ggalign(size = unit(1, "cm"), data = NULL) +
    geom_tile(aes(x = 1, fill = factor(.panel))) +
    scale_fill_brewer(palette = "Dark2", name = "Kmeans group") +
    scale_x_continuous(breaks = NULL, name = NULL) +
    # add a heatmap plot in the stack
    heat1 +
    # add another heatmap in the stack
    heat2 +
    # we move into the stack layout
    stack_active() +
    # add a point plot
    ggalign(data = expr$length, size = unit(2, "cm")) +
    geom_point(aes(x = value)) +
    labs(x = "length") +
    theme(
        panel.border = element_rect(fill = NA),
        axis.text.x = element_text(angle = -60, hjust = 0)
    ) +
    # add another heatmap
    heat3 &
    theme(
        plot.background = element_blank(),
        panel.background = element_blank(),
        legend.background = element_blank()
    )

教程2

r 复制代码
mat <- read_example("measles.rds")
ggheatmap(mat, filling = FALSE) +
    geom_tile(aes(fill = value), color = "white") +
    scale_fill_gradientn(
        colours = c("white", "cornflowerblue", "yellow", "red"),
        values = scales::rescale(c(0, 800, 1000, 127000), c(0, 1))
    ) +
    theme(axis.text.x = element_text(angle = -60, hjust = 0)) +
    anno_right() +
    align_dendro(plot_dendrogram = FALSE) +
    anno_top(size = unit(2, "cm")) +
    ggalign(data = rowSums) +
    geom_bar(aes(y = value), fill = "#FFE200", stat = "identity") +
    scale_y_continuous(expand = expansion()) +
    ggtitle("Measles cases in US states 1930-2001\nVaccine introduced 1961") +
    theme(plot.title = element_text(hjust = 0.5)) +
    anno_right(size = unit(2, "cm")) +
    ggalign(data = rowSums) +
    geom_bar(aes(x = value),
        fill = "#FFE200", stat = "identity",
        orientation = "y"
    ) +
    scale_x_continuous(expand = expansion()) +
    theme(axis.text.x = element_text(angle = -60, hjust = 0))

参考

相关推荐
Liue6123123113 小时前
自卸车多部件识别 _ Mask R-CNN改进模型实现(Caffe+FPN)_1
r语言·cnn·caffe
不剪发的Tony老师15 小时前
Shaper:一款免费开源的数据可视化工具
sql·数据可视化
码界筑梦坊17 小时前
327-基于Django的兰州空气质量大数据可视化分析系统
python·信息可视化·数据分析·django·毕业设计·数据可视化
砚边数影2 天前
数据可视化入门:Matplotlib 基础语法与折线图绘制
数据库·信息可视化·matplotlib·数据可视化·kingbase·数据库平替用金仓·金仓数据库
jiang_changsheng2 天前
环境管理工具全景图与深度对比
java·c语言·开发语言·c++·python·r语言
JicasdC123asd2 天前
使用Faster R-CNN模型训练汽车品牌与型号检测数据集 改进C4结构 优化汽车识别系统 多类别检测 VOC格式
r语言·cnn·汽车
deephub3 天前
分类数据 EDA 实战:如何发现隐藏的层次结构
人工智能·python·机器学习·数据分析·数据可视化
杨超越luckly3 天前
从传统 GIS 向智能/自动化脚本演进:地铁接驳公交识别的 ArcGIS 与 Python 双路径实践
开发语言·arcgis·php·交互·数据可视化
小贺儿开发3 天前
Unity3D 智慧城市管理平台
数据库·人工智能·unity·智慧城市·数据可视化
请你喝好果汁6413 天前
## 学习笔记:R 语言中比例字符串的数值转换,如GeneRatio中5/100的处理
笔记·学习·r语言