R包:ggalign调整和组合多个图形的R包

文章目录

介绍

这个包扩展了ggplot2,提供了用于对齐和组织多个图的高级工具,特别是那些自动重新排序观察结果的工具,比如树形图。它提供了对布局调整和情节注释的精细控制,使您能够创建复杂的、出版质量的可视化,同时仍然使用熟悉的ggplot2语法。

This package extends ggplot2 by providing advanced tools for aligning and organizing multiple plots, particularly those that automatically reorder observations, such as dendrogram. It offers fine control over layout adjustment and plot annotations, enabling you to create complex, publication-quality visualizations while still using the familiar grammar of ggplot2.

案例

安装R包

r 复制代码
install.packages("ggalign")

install.packages("ggalign",
    repos = c("https://yunuuuu.r-universe.dev", "https://cloud.r-project.org")
)

# install.packages("remotes")
remotes::install_github("Yunuuuu/ggalign")

教程1

r 复制代码
library(ggalign)

expr <- read_example("gene_expression.rds")
mat <- as.matrix(expr[, grep("cell", colnames(expr))])
base_mean <- rowMeans(mat)
mat_scaled <- t(apply(mat, 1, scale))
type <- gsub("s\\d+_", "", colnames(mat))

heat1 <- ggheatmap(mat_scaled) -
    scheme_align(free_spaces = "l") +
    scale_y_continuous(breaks = NULL) +
    scale_fill_viridis_c(option = "magma") +
    # add dendrogram for this heatmap
    anno_top() +
    align_dendro() +
    # add a block for the heatmap column
    ggalign(data = type, size = unit(1, "cm")) +
    geom_tile(aes(y = 1, fill = factor(value))) +
    scale_y_continuous(breaks = NULL, name = NULL) +
    scale_fill_brewer(
        palette = "Set1", name = "type",
        guide = guide_legend(position = "top")
    )

heat2 <- ggheatmap(base_mean, width = unit(2, "cm")) +
    scale_y_continuous(breaks = NULL) +
    scale_x_continuous(name = "base mean", breaks = FALSE) +
    scale_fill_gradientn(colours = c("#2600D1FF", "white", "#EE3F3FFF")) +
    # set the active context of the heatmap to the top
    # and set the size of the top stack
    anno_top(size = unit(4, "cm")) +
    # add box plot in the heatmap top
    ggalign() +
    geom_boxplot(aes(y = value, fill = factor(.extra_panel))) +
    scale_x_continuous(expand = expansion(), breaks = NULL) +
    scale_fill_brewer(
        palette = "Dark2", name = "base mean",
        guide = guide_legend(position = "top")
    ) +
    theme(axis.title.y = element_blank())

heat3 <- ggheatmap(expr$type, width = unit(2, "cm")) +
    scale_fill_brewer(palette = "Set3", name = "gene type") +
    scale_x_continuous(breaks = NULL, name = "gene type") +
    # add barplot in the top annotation, and remove the spaces in the y-axis
    anno_top() -
    scheme_align(free_spaces = "lr") +
    ggalign() +
    geom_bar(
        aes(.extra_panel, fill = factor(value)),
        position = position_fill()
    ) +
    scale_y_continuous(expand = expansion()) +
    scale_fill_brewer(palette = "Set3", name = "gene type", guide = "none") -
    scheme_theme(plot.margin = margin())

stack_alignh(mat_scaled) +
    stack_active(sizes = c(0.2, 1, 1)) +
    # group stack rows into 5 groups
    align_kmeans(centers = 5L) +
    # add a block plot for each group in the stack
    ggalign(size = unit(1, "cm"), data = NULL) +
    geom_tile(aes(x = 1, fill = factor(.panel))) +
    scale_fill_brewer(palette = "Dark2", name = "Kmeans group") +
    scale_x_continuous(breaks = NULL, name = NULL) +
    # add a heatmap plot in the stack
    heat1 +
    # add another heatmap in the stack
    heat2 +
    # we move into the stack layout
    stack_active() +
    # add a point plot
    ggalign(data = expr$length, size = unit(2, "cm")) +
    geom_point(aes(x = value)) +
    labs(x = "length") +
    theme(
        panel.border = element_rect(fill = NA),
        axis.text.x = element_text(angle = -60, hjust = 0)
    ) +
    # add another heatmap
    heat3 &
    theme(
        plot.background = element_blank(),
        panel.background = element_blank(),
        legend.background = element_blank()
    )

教程2

r 复制代码
mat <- read_example("measles.rds")
ggheatmap(mat, filling = FALSE) +
    geom_tile(aes(fill = value), color = "white") +
    scale_fill_gradientn(
        colours = c("white", "cornflowerblue", "yellow", "red"),
        values = scales::rescale(c(0, 800, 1000, 127000), c(0, 1))
    ) +
    theme(axis.text.x = element_text(angle = -60, hjust = 0)) +
    anno_right() +
    align_dendro(plot_dendrogram = FALSE) +
    anno_top(size = unit(2, "cm")) +
    ggalign(data = rowSums) +
    geom_bar(aes(y = value), fill = "#FFE200", stat = "identity") +
    scale_y_continuous(expand = expansion()) +
    ggtitle("Measles cases in US states 1930-2001\nVaccine introduced 1961") +
    theme(plot.title = element_text(hjust = 0.5)) +
    anno_right(size = unit(2, "cm")) +
    ggalign(data = rowSums) +
    geom_bar(aes(x = value),
        fill = "#FFE200", stat = "identity",
        orientation = "y"
    ) +
    scale_x_continuous(expand = expansion()) +
    theme(axis.text.x = element_text(angle = -60, hjust = 0))

参考

相关推荐
Code_流苏5 小时前
Python星球日记 - 第20天:数据分析入门
python·数据分析·数据可视化·数据清洗·pandas库
邢博士谈科教8 小时前
在执行生信分析的时候提示缺少一些R包的报错解决
数据挖掘·r语言
蘑菇头爱平底锅8 小时前
数字孪生-DTS-孪创城市-前端用代码实现行政区划分
前端·数据可视化
小八四爱吃甜食8 小时前
【R语言绘图】圈图绘制代码
开发语言·r语言
蘑菇头爱平底锅11 小时前
数字孪生-DTS-孪创城市-导览功能、虚拟现实
前端·数据可视化
maizeman12612 小时前
R语言——散点图
开发语言·r语言·可视化·散点图
小白—人工智能12 小时前
数据可视化 —— 折线图应用(大全)
python·信息可视化·数据可视化
数小模.1 天前
R语言进行聚类分析
开发语言·r语言
蘑菇头爱平底锅1 天前
数字孪生-DTS-孪创城市-天气功能
前端·数据可视化
蘑菇头爱平底锅1 天前
数字孪生-DTS-孪创城市-全局功能
前端·数据可视化