权重修剪(Pruning)和量化(Quantization)

权重修剪(Pruning)和量化(Quantization)都是深度学习模型压缩和加速的重要技术,它们都能减少模型大小和计算复杂度,但方式和原理不同:

1. 权重修剪(Pruning)

权重修剪的主要思想是移除对模型预测影响较小的权重,使模型更加稀疏,从而减少存储需求和计算量。主要的修剪方式包括:

  • 非结构化剪枝(Unstructured Pruning):直接去除权重矩阵中绝对值较小的权重,例如设定一个阈值,把小于该阈值的权重置零。这样可以减少存储需求,但计算上仍然需要特殊的优化(如稀疏矩阵乘法)。
  • 结构化剪枝(Structured Pruning):直接剪掉整个神经元、卷积核或通道,从而减少计算量,使模型在硬件上更容易加速。

为什么剪枝能减小模型大小?

  • 剪枝后,许多权重变为零,可以采用稀疏存储格式(如CSR格式)来减少存储需求。
  • 结构化剪枝能减少整个神经元或通道,从而降低计算复杂度,加速推理。

2. 量化(Quantization)

量化的核心思想是减少模型中数值表示的位数,通常是将 32-bit 浮点数(FP32)转换为 16-bit(FP16)、8-bit(INT8)或更低的精度。

常见的量化方法:

  • 后训练量化(Post-training Quantization, PTQ):在训练完成后,将权重和激活值转换为低精度表示,通常结合校准数据来减少精度损失。
  • 量化感知训练(Quantization-aware Training, QAT):在训练过程中引入量化模拟,使模型在低精度下仍能保持较高准确率。

为什么量化能减小模型大小?

  • 低精度的权重占用更少的存储空间,例如:
    • FP32(32-bit) → INT8(8-bit)可减少 4 倍 存储需求。
  • 计算时使用低精度数据可以加速推理,尤其是在支持 INT8 计算的硬件(如 ARM 处理器、TPU)上,计算效率大幅提升。

总结:权重修剪 vs 量化

方法 主要作用 如何减少模型大小 计算加速
权重修剪 移除不重要的权重 稀疏存储,减少非必要参数 结构化剪枝可减少计算量
量化 用低位数表示权重 用更少的比特存储参数 低精度计算加速推理

两者可以结合使用,例如:

  1. 先进行权重修剪,使模型更稀疏;
  2. 再进行量化,将剩余的权重存储为低精度数据。

这样既能减少存储需求,也能加速推理。

相关推荐
Java中文社群1 小时前
AI实战:一键生成数字人视频!
java·人工智能·后端
AI大模型技术社1 小时前
🔧 PyTorch高阶开发工具箱:自定义模块+损失函数+部署流水线完整实现
人工智能·pytorch
LLM大模型1 小时前
LangChain篇-基于SQL实现数据分析问答
人工智能·程序员·llm
LLM大模型1 小时前
LangChain篇-整合维基百科实现网页问答
人工智能·程序员·llm
DeepSeek忠实粉丝1 小时前
微调篇--基于GPT定制化微调训练
人工智能·程序员·llm
王中阳Go1 小时前
从超市收银到航空调度:贪心算法如何破解生活中的最优决策谜题?
java·后端·算法
聚客AI2 小时前
💡 图解Transformer生命周期:训练、自回归生成与Beam Search的视觉化解析
人工智能·llm·掘金·日新计划
故事挺秃然2 小时前
中文分词:机械分词算法详解与实践总结
算法·nlp
神经星星3 小时前
从石英到铁电材料,哈佛大学提出等变机器学习框架,加速材料大规模电场模拟
人工智能·深度学习·机器学习
摆烂工程师3 小时前
Google One AI Pro 的教育学生优惠即将在六月底结束了!教你如何认证Gemini学生优惠!
前端·人工智能·后端