权重修剪(Pruning)和量化(Quantization)

权重修剪(Pruning)和量化(Quantization)都是深度学习模型压缩和加速的重要技术,它们都能减少模型大小和计算复杂度,但方式和原理不同:

1. 权重修剪(Pruning)

权重修剪的主要思想是移除对模型预测影响较小的权重,使模型更加稀疏,从而减少存储需求和计算量。主要的修剪方式包括:

  • 非结构化剪枝(Unstructured Pruning):直接去除权重矩阵中绝对值较小的权重,例如设定一个阈值,把小于该阈值的权重置零。这样可以减少存储需求,但计算上仍然需要特殊的优化(如稀疏矩阵乘法)。
  • 结构化剪枝(Structured Pruning):直接剪掉整个神经元、卷积核或通道,从而减少计算量,使模型在硬件上更容易加速。

为什么剪枝能减小模型大小?

  • 剪枝后,许多权重变为零,可以采用稀疏存储格式(如CSR格式)来减少存储需求。
  • 结构化剪枝能减少整个神经元或通道,从而降低计算复杂度,加速推理。

2. 量化(Quantization)

量化的核心思想是减少模型中数值表示的位数,通常是将 32-bit 浮点数(FP32)转换为 16-bit(FP16)、8-bit(INT8)或更低的精度。

常见的量化方法:

  • 后训练量化(Post-training Quantization, PTQ):在训练完成后,将权重和激活值转换为低精度表示,通常结合校准数据来减少精度损失。
  • 量化感知训练(Quantization-aware Training, QAT):在训练过程中引入量化模拟,使模型在低精度下仍能保持较高准确率。

为什么量化能减小模型大小?

  • 低精度的权重占用更少的存储空间,例如:
    • FP32(32-bit) → INT8(8-bit)可减少 4 倍 存储需求。
  • 计算时使用低精度数据可以加速推理,尤其是在支持 INT8 计算的硬件(如 ARM 处理器、TPU)上,计算效率大幅提升。

总结:权重修剪 vs 量化

方法 主要作用 如何减少模型大小 计算加速
权重修剪 移除不重要的权重 稀疏存储,减少非必要参数 结构化剪枝可减少计算量
量化 用低位数表示权重 用更少的比特存储参数 低精度计算加速推理

两者可以结合使用,例如:

  1. 先进行权重修剪,使模型更稀疏;
  2. 再进行量化,将剩余的权重存储为低精度数据。

这样既能减少存储需求,也能加速推理。

相关推荐
JoannaJuanCV22 分钟前
自动驾驶—CARLA仿真(6)vehicle_gallery demo
人工智能·机器学习·自动驾驶·carla
sin_hielo33 分钟前
leetcode 2110
数据结构·算法·leetcode
Hundred billion37 分钟前
深度学习基本原理和流程
人工智能·深度学习
周杰伦_Jay39 分钟前
【大模型数据标注】核心技术与优秀开源框架
人工智能·机器学习·eureka·开源·github
Jay200211141 分钟前
【机器学习】33 强化学习 - 连续状态空间(DQN算法)
人工智能·算法·机器学习
Learn Forever1 小时前
由ChatGPT 的记忆系统谈及如何构建一个对话应用智能体
人工智能
panzer_maus1 小时前
归并排序的简单介绍
java·数据结构·算法
资深低代码开发平台专家1 小时前
GPT-5.2与Gemini 3.0终极抉择:谁更适配你的需求?
人工智能·gpt·ai
得贤招聘官1 小时前
AI招聘的核心破局:从“流程装饰”到“决策引擎”
人工智能
一水鉴天1 小时前
整体设计 定稿 之26 重构和改造现有程序结构 之2 (codebuddy)
开发语言·人工智能·重构·架构