Bandana论文阅读

碎碎念: 读完这个WWW上的论文,我只能说nb,17页,越看越觉得Bandana模型好,而且提出了一种新的评估方法,让那些本来链接预测的结果很好的都下降了好多
最最最重要的一点 :细节决定成败!!!

回顾以前看论文就看的很粗略不记笔记,导致啥也没学到

基本思想

  • Bandana采用了离散带宽的掩码策略,并不是把边看成掩码/不掩码,而是可以看成掩50%的码,把传统的二元01掩码策略变成了连续掩码,实现方法是用邻接矩阵乘以一个遵从玻尔兹曼分布的矩阵(灵感来源于GAT)
  • 而且还对encoder嵌入的每一层都进行了掩码,不同层的掩码矩阵不一样,但最后嵌入表示是最后一层的
  • 重构目标变为了预测带宽,即预测这条边被掩码了多少

论文里没有框架流程图,只有对每一部分进行分析的图

分析现有的存在的问题

从局部和全局性的信息角度进行分析

  • 局部信息:传统的二元掩码不提供邻居的可辨别性,GCN和GAT都不够好
  • 全局信息:二元掩码会阻碍信息的流动
  • 但Bandan的encoder不能用GAT或Transformer,因为他为每条边分配了权重,而GAT就是依靠学习到的边的权重而进行,Transformer里面也有注意力权重
  • 而且Bandana的时空复杂度都挺高的
  • 从各种实验角度证明Bandana的好处,普通的链接预测,节点分类,大规模图上的,半监督学习上的,能量模型,流式学习等等

以后可以用到的

  • 提出了一种新的评估手段,用点积代替了下游任务的解码器,防止解码器训练后对实验结果产生影响,从而无法突出预训练的编码器的好处
  • GAT在给邻居分配权重时相似(?)
  • 拓扑学习不仅可以理解图结构,还能揭示出节点特征的潜在模式
相关推荐
llddycidy36 分钟前
峰值需求预测中的机器学习:基础、趋势和见解(最新文献)
网络·人工智能·深度学习
AI小怪兽1 小时前
轻量、实时、高精度!MIE-YOLO:面向精准农业的多尺度杂草检测新框架 | MDPI AgriEngineering 2026
开发语言·人工智能·深度学习·yolo·无人机
一招定胜负1 小时前
图像形态学+边缘检测及CNN关联
人工智能·深度学习·cnn
没学上了2 小时前
VLM-单头自注意力机制核心逻辑
人工智能·pytorch·深度学习
*西瓜2 小时前
RainGaugeNet:基于CSI的Sub-6 GHz降雨衰减测量和分类用于ISAC应用
论文阅读
清风吹过2 小时前
Birch聚类算法
论文阅读·深度学习·神经网络·机器学习
子午2 小时前
【2026原创】动物识别系统~Python+深度学习+人工智能+模型训练+图像识别
人工智能·python·深度学习
victory04312 小时前
大模型学习阶段总结和下一阶段展望
深度学习·学习·大模型
摘星观月3 小时前
【三维重建2】TCPFormer以及NeRF相关SOTA方法
人工智能·深度学习
人工小情绪3 小时前
深度学习模型部署
人工智能·深度学习