Bandana论文阅读

碎碎念: 读完这个WWW上的论文,我只能说nb,17页,越看越觉得Bandana模型好,而且提出了一种新的评估方法,让那些本来链接预测的结果很好的都下降了好多
最最最重要的一点 :细节决定成败!!!

回顾以前看论文就看的很粗略不记笔记,导致啥也没学到

基本思想

  • Bandana采用了离散带宽的掩码策略,并不是把边看成掩码/不掩码,而是可以看成掩50%的码,把传统的二元01掩码策略变成了连续掩码,实现方法是用邻接矩阵乘以一个遵从玻尔兹曼分布的矩阵(灵感来源于GAT)
  • 而且还对encoder嵌入的每一层都进行了掩码,不同层的掩码矩阵不一样,但最后嵌入表示是最后一层的
  • 重构目标变为了预测带宽,即预测这条边被掩码了多少

论文里没有框架流程图,只有对每一部分进行分析的图

分析现有的存在的问题

从局部和全局性的信息角度进行分析

  • 局部信息:传统的二元掩码不提供邻居的可辨别性,GCN和GAT都不够好
  • 全局信息:二元掩码会阻碍信息的流动
  • 但Bandan的encoder不能用GAT或Transformer,因为他为每条边分配了权重,而GAT就是依靠学习到的边的权重而进行,Transformer里面也有注意力权重
  • 而且Bandana的时空复杂度都挺高的
  • 从各种实验角度证明Bandana的好处,普通的链接预测,节点分类,大规模图上的,半监督学习上的,能量模型,流式学习等等

以后可以用到的

  • 提出了一种新的评估手段,用点积代替了下游任务的解码器,防止解码器训练后对实验结果产生影响,从而无法突出预训练的编码器的好处
  • GAT在给邻居分配权重时相似(?)
  • 拓扑学习不仅可以理解图结构,还能揭示出节点特征的潜在模式
相关推荐
罗西的思考8 小时前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法
深度学习实战训练营9 小时前
U-Net++:嵌套密集跳跃连接,多尺度融合增强特征表达,医学影像分割的unet创新-k学长深度学习专栏
人工智能·深度学习
哥布林学者9 小时前
吴恩达深度学习课程四:计算机视觉 第二周:经典网络结构 (一)经典卷积网络
深度学习·ai
Coding茶水间10 小时前
基于深度学习的反光衣检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
IT·小灰灰11 小时前
告别“翻墙“烦恼:DMXAPI让Gemini-3-pro-thinking调用快如闪电
网络·人工智能·python·深度学习·云计算
DatGuy11 小时前
Week 29: 深度学习补遗:MoE的稳定性机制与路由策略实现
人工智能·深度学习
一瞬祈望13 小时前
PyTorch 图像分类完整项目模板实战
人工智能·pytorch·python·深度学习·分类
Master_oid14 小时前
机器学习25:了解领域自适应(Domain Adaptation)
人工智能·深度学习·机器学习
江上鹤.14814 小时前
Day37 MLP神经网络的训练
人工智能·深度学习·神经网络
java1234_小锋14 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 残差连接(Residual Connection)详解以及算法实现
深度学习·语言模型·transformer