Bandana论文阅读

碎碎念: 读完这个WWW上的论文,我只能说nb,17页,越看越觉得Bandana模型好,而且提出了一种新的评估方法,让那些本来链接预测的结果很好的都下降了好多
最最最重要的一点 :细节决定成败!!!

回顾以前看论文就看的很粗略不记笔记,导致啥也没学到

基本思想

  • Bandana采用了离散带宽的掩码策略,并不是把边看成掩码/不掩码,而是可以看成掩50%的码,把传统的二元01掩码策略变成了连续掩码,实现方法是用邻接矩阵乘以一个遵从玻尔兹曼分布的矩阵(灵感来源于GAT)
  • 而且还对encoder嵌入的每一层都进行了掩码,不同层的掩码矩阵不一样,但最后嵌入表示是最后一层的
  • 重构目标变为了预测带宽,即预测这条边被掩码了多少

论文里没有框架流程图,只有对每一部分进行分析的图

分析现有的存在的问题

从局部和全局性的信息角度进行分析

  • 局部信息:传统的二元掩码不提供邻居的可辨别性,GCN和GAT都不够好
  • 全局信息:二元掩码会阻碍信息的流动
  • 但Bandan的encoder不能用GAT或Transformer,因为他为每条边分配了权重,而GAT就是依靠学习到的边的权重而进行,Transformer里面也有注意力权重
  • 而且Bandana的时空复杂度都挺高的
  • 从各种实验角度证明Bandana的好处,普通的链接预测,节点分类,大规模图上的,半监督学习上的,能量模型,流式学习等等

以后可以用到的

  • 提出了一种新的评估手段,用点积代替了下游任务的解码器,防止解码器训练后对实验结果产生影响,从而无法突出预训练的编码器的好处
  • GAT在给邻居分配权重时相似(?)
  • 拓扑学习不仅可以理解图结构,还能揭示出节点特征的潜在模式
相关推荐
云之渺7 分钟前
数学十三
深度学习
ahead~19 分钟前
【大模型原理与技术-毛玉仁】第五章 模型编辑
人工智能·深度学习·机器学习
迪娜学姐26 分钟前
GenSpark vs Manus实测对比:文献综述与学术PPT,哪家强?
论文阅读·人工智能·prompt·powerpoint·论文笔记
小天才才1 小时前
前沿论文汇总(机器学习/深度学习/大模型/搜广推/自然语言处理)
人工智能·深度学习·机器学习·自然语言处理
l木本I1 小时前
大模型低秩微调技术 LoRA 深度解析与实践
python·深度学习·自然语言处理·lstm·transformer
顽强卖力2 小时前
第二十八课:深度学习及pytorch简介
人工智能·pytorch·深度学习
要努力啊啊啊2 小时前
使用 Python + SQLAlchemy 创建知识库数据库(SQLite)—— 构建本地知识库系统的基础《一》
数据库·人工智能·python·深度学习·自然语言处理·sqlite
wufeil3 小时前
基于功能基团的3D分子生成扩散模型 - D3FG 评测
深度学习·分子生成·药物设计·ai辅助药物设计·计算机辅助药物设计
Andrew_Xzw3 小时前
数据结构与算法(快速基础C++版)
开发语言·数据结构·c++·python·深度学习·算法
deephub15 小时前
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
人工智能·pytorch·python·深度学习·机器学习·正则化