多模态统一框架:基于下一帧预测的视频化方法

摘要

多模态学习涉及整合文本、图像、音频和视频等多种模态信息,对视觉问答、跨模态检索和字幕生成等复杂任务至关重要。传统方法依赖模态特定编码器和后期融合技术,限制了其适应新任务或模态的可扩展性和灵活性。为解决这些问题,本文提出了一种新颖框架,将自然语言处理(NLP)中的任务重构思想扩展至多模态学习领域。

核心方法

通过将多样化多模态任务重新定义为统一的下一帧预测问题,该框架允许单一模型处理不同模态而无需模态专用组件。所有输入和输出均被视为视频中的连续帧,从而实现模态无缝集成和跨任务知识迁移。

实验验证

在文本到文本、图像到文本、视频到视频、视频到文本及音频到文本等任务上的实验表明,该模型能以最小适配成本实现跨模态泛化。研究证实,任务重构可显著简化多模态模型设计,为通用多模态基础模型奠定基础。

技术贡献

  • 统一架构:消除模态专用组件,通过视频序列化实现多模态统一处理。
  • 灵活适配:支持动态扩展新模态,仅需调整输入帧序列化策略。
  • 性能验证:在5类跨模态任务中均展现竞争力,代码与模型已开源。

更多精彩内容 请关注我的个人公众号 公众号(办公AI智能小助手)

公众号二维码

相关推荐
HyperAI超神经29 分钟前
完整回放|上海创智/TileAI/华为/先进编译实验室/AI9Stars深度拆解 AI 编译器技术实践
人工智能·深度学习·机器学习·开源
碎碎思1 小时前
在 FPGA 上实现并行脉冲神经网络(Spiking Neural Net)
人工智能·深度学习·神经网络·机器学习·fpga开发
Terrence Shen1 小时前
【CUDA编程系列】之01
c++·人工智能·深度学习·机器学习
AI即插即用1 小时前
超分辨率重建 | CVPR 2024 DarkIR:轻量级低光照图像增强与去模糊模型(代码实践)
图像处理·人工智能·深度学习·神经网络·计算机视觉·超分辨率重建
OpenBayes1 小时前
HY-MT1.5-1.8B 支持多语言神经机器翻译;Med-Banana-50K 提供医学影像编辑基准数据
人工智能·深度学习·自然语言处理·数据集·机器翻译·图像生成
次元工程师!2 小时前
Ubuntu部署DDSP-SVC 6.3音色克隆大模型和使用(基于SVC Fusion整合包)
人工智能·深度学习·ai·svc·ddsp·音色克隆
haiyu_y2 小时前
Day 57 经典时序模型(1)——差分、ACF/PACF 与 AR/MA/ARMA
人工智能·深度学习·ar
duyinbi75172 小时前
【深度学习】使用YOLOv8-MFMMAFPN进行泡沫检测的完整实现
人工智能·深度学习·yolo
xwill*2 小时前
wandb的使用方法,以navrl为例
开发语言·python·深度学习
木头左2 小时前
贝叶斯深度学习在指数期权风险价值VaR估计中的实现与应用
人工智能·深度学习