多模态统一框架:基于下一帧预测的视频化方法

摘要

多模态学习涉及整合文本、图像、音频和视频等多种模态信息,对视觉问答、跨模态检索和字幕生成等复杂任务至关重要。传统方法依赖模态特定编码器和后期融合技术,限制了其适应新任务或模态的可扩展性和灵活性。为解决这些问题,本文提出了一种新颖框架,将自然语言处理(NLP)中的任务重构思想扩展至多模态学习领域。

核心方法

通过将多样化多模态任务重新定义为统一的下一帧预测问题,该框架允许单一模型处理不同模态而无需模态专用组件。所有输入和输出均被视为视频中的连续帧,从而实现模态无缝集成和跨任务知识迁移。

实验验证

在文本到文本、图像到文本、视频到视频、视频到文本及音频到文本等任务上的实验表明,该模型能以最小适配成本实现跨模态泛化。研究证实,任务重构可显著简化多模态模型设计,为通用多模态基础模型奠定基础。

技术贡献

  • 统一架构:消除模态专用组件,通过视频序列化实现多模态统一处理。
  • 灵活适配:支持动态扩展新模态,仅需调整输入帧序列化策略。
  • 性能验证:在5类跨模态任务中均展现竞争力,代码与模型已开源。

更多精彩内容 请关注我的个人公众号 公众号(办公AI智能小助手)

公众号二维码

相关推荐
DKunYu1 天前
2.1线性回归
pytorch·python·深度学习·1024程序员节
这张生成的图像能检测吗1 天前
(论文速读)开放词汇3D场景理解的掩蔽点-实体对比
人工智能·计算机视觉·图像生成·1024程序员节·开放词汇·3d重建
大象耶1 天前
计算机视觉六大前沿创新方向
论文阅读·人工智能·深度学习·计算机网络·机器学习
hour_go1 天前
【知识图谱】图神经网络(GNN)核心概念详解:从消息传递到实战应用
笔记·深度学习·神经网络·1024程序员节
tangchen。1 天前
YOLOv4 :兼顾速度与精度!
人工智能·计算机视觉·目标跟踪
学术头条1 天前
用视觉压缩文本!清华、智谱推出Glyph框架:通过视觉-文本压缩扩展上下文窗口
人工智能·深度学习·计算机视觉
Mrliu__1 天前
Opencv(一): 用Opencv了解图像
人工智能·opencv·计算机视觉
m0_650108241 天前
【论文精读】Animate Anyone:实现角色动画的一致性与可控性图像到视频合成
计算机视觉·扩散模型·论文精读·图像到视频合成·角色动画·姿态引导器·可控生成
B站_计算机毕业设计之家1 天前
基于python人脸识别系统 人脸检测 实时检测 深度学习 Dlib库 ResNet深度卷积神经网络 pyqt设计 大数据(源码)✅
python·深度学习·目标检测·计算机视觉·信息可视化·人脸识别·1024程序员节
Theodore_10221 天前
机器学习(9)正则化
人工智能·深度学习·机器学习·计算机视觉·线性回归·1024程序员节