多模态统一框架:基于下一帧预测的视频化方法

摘要

多模态学习涉及整合文本、图像、音频和视频等多种模态信息,对视觉问答、跨模态检索和字幕生成等复杂任务至关重要。传统方法依赖模态特定编码器和后期融合技术,限制了其适应新任务或模态的可扩展性和灵活性。为解决这些问题,本文提出了一种新颖框架,将自然语言处理(NLP)中的任务重构思想扩展至多模态学习领域。

核心方法

通过将多样化多模态任务重新定义为统一的下一帧预测问题,该框架允许单一模型处理不同模态而无需模态专用组件。所有输入和输出均被视为视频中的连续帧,从而实现模态无缝集成和跨任务知识迁移。

实验验证

在文本到文本、图像到文本、视频到视频、视频到文本及音频到文本等任务上的实验表明,该模型能以最小适配成本实现跨模态泛化。研究证实,任务重构可显著简化多模态模型设计,为通用多模态基础模型奠定基础。

技术贡献

  • 统一架构:消除模态专用组件,通过视频序列化实现多模态统一处理。
  • 灵活适配:支持动态扩展新模态,仅需调整输入帧序列化策略。
  • 性能验证:在5类跨模态任务中均展现竞争力,代码与模型已开源。

更多精彩内容 请关注我的个人公众号 公众号(办公AI智能小助手)

公众号二维码

相关推荐
王哥儿聊AI26 分钟前
告别人工出题!PromptCoT 2.0 让大模型自己造训练难题,7B 模型仅用合成数据碾压人工数据集效果!
人工智能·深度学习·算法·机器学习·软件工程
拉姆哥的小屋29 分钟前
基于提示学习的多模态情感分析系统:从MULT到PromptModel的华丽升级
python·深度学习·学习
yourkin66636 分钟前
人工智能 (AI) > 机器学习 (ML) > 深度学习 (DL)
人工智能·深度学习·机器学习
蒋星熠1 小时前
爬虫与自动化技术深度解析:从数据采集到智能运维的完整实战指南
运维·人工智能·爬虫·python·深度学习·机器学习·自动化
机器学习之心2 小时前
198种组合算法+优化BiGRU双向门控循环单元+SHAP分析+新数据预测+多输出!深度学习可解释分析,强烈安利,粉丝必备!
深度学习·算法·shap分析·新数据预测·优化bigru
AI人工智能+3 小时前
表格识别技术:突破传统OCR的局限,通过定位-解析-重建三步策略攻克无边框、合并单元格等视觉难题
人工智能·深度学习·ocr·表格识别
不枯石3 小时前
Matlab通过GUI实现点云的ICP配准
linux·前端·图像处理·计算机视觉·matlab
学习的学习者4 小时前
CS课程项目设计19:基于DeepFace人脸识别库的课堂签到系统
人工智能·python·深度学习·人脸识别算法
IT古董4 小时前
【第五章:计算机视觉-项目实战之生成对抗网络实战】2.基于SRGAN的图像超分辨率实战-(2)实战1:DCGAN模型搭建
人工智能·生成对抗网络·计算机视觉
Francek Chen6 小时前
【深度学习计算机视觉】09:语义分割和数据集
人工智能·pytorch·深度学习·计算机视觉·数据集·语义分割