(arxiv2411) CARE Transformer

作者提出了两个问题,问题 1:堆叠是充分利用局部归纳偏差和长距离信息优势的最佳方法吗?

问题 2:是否有可能同时提高线性视觉 Transformer 的效率和准确性?

为了解决这两个问题,作者提出了一种 deCoupled duAl-interactive lineaR attEntion(CARE)。对于问题 1,asymmetrical decoupling strategy可以充分释放线性注意力的潜力。如图 2(b)所示,通过在通道维度上对特征进行解耦,输入无需经过所有的卷积和线性注意力操作。对于问题2,为了充分利用特征的互补性,首先设计了一个动态记忆单元保留关键信息。然后,引入了一个dual interaction module,有效地促进局部偏差和长距离依赖之间以及不同层特征之间的交互。非对称解耦策略节省了学习局部归纳偏差和全局信息的计算成本,而跨特征交互可以灵活有效地利用所学特征中的信息。

模型的总体框架如下图所示,分为四个阶段,每个阶段里有若干 CARE block堆叠。在 CARE block里,首先进行特征的 asymmetrical decoupling,即将输入特征从通道维度分为两部分,一部分进行线性注意力计算,另一部分进行卷积运算。然后特征输入到 dual interaction module 处理,细节如下图所示。在第二次 interaction 里,引入了Z,也就是动态记忆单元。

这个工作在前面重点介绍了"Demystify Mamba in Vision: A Linear Attention Perspective"中提出的MILA,说在该工作中 Linear attention 和 卷积 被堆叠。因此,作者想法是将二两进行不对称解耦。我比较好奇用于 linear attention 和 卷积 两部分的特征比例是如何设置的,也许是我看不够仔细,论文里貌似没有介绍。

相关推荐
带娃的IT创业者11 分钟前
机器学习实战(8):降维技术——主成分分析(PCA)
人工智能·机器学习·分类·聚类
调皮的芋头35 分钟前
iOS各个证书生成细节
人工智能·ios·app·aigc
flying robot3 小时前
人工智能基础之数学基础:01高等数学基础
人工智能·机器学习
Moutai码农3 小时前
机器学习-生命周期
人工智能·python·机器学习·数据挖掘
188_djh3 小时前
# 10分钟了解DeepSeek,保姆级部署DeepSeek到WPS,实现AI赋能
人工智能·大语言模型·wps·ai技术·ai应用·deepseek·ai知识
Jackilina_Stone3 小时前
【DL】浅谈深度学习中的知识蒸馏 | 输出层知识蒸馏
人工智能·深度学习·机器学习·蒸馏
bug404_4 小时前
分布式大语言模型服务引擎vLLM论文解读
人工智能·分布式·语言模型
Logout:4 小时前
[AI]docker封装包含cuda cudnn的paddlepaddle PaddleOCR
人工智能·docker·paddlepaddle
OJAC近屿智能4 小时前
苹果新品今日发布,AI手机市场竞争加剧,近屿智能专注AI人才培养
大数据·人工智能·ai·智能手机·aigc·近屿智能
代码猪猪傻瓜coding5 小时前
关于 形状信息提取的说明
人工智能·python·深度学习