(arxiv2411) CARE Transformer

作者提出了两个问题,问题 1:堆叠是充分利用局部归纳偏差和长距离信息优势的最佳方法吗?

问题 2:是否有可能同时提高线性视觉 Transformer 的效率和准确性?

为了解决这两个问题,作者提出了一种 deCoupled duAl-interactive lineaR attEntion(CARE)。对于问题 1,asymmetrical decoupling strategy可以充分释放线性注意力的潜力。如图 2(b)所示,通过在通道维度上对特征进行解耦,输入无需经过所有的卷积和线性注意力操作。对于问题2,为了充分利用特征的互补性,首先设计了一个动态记忆单元保留关键信息。然后,引入了一个dual interaction module,有效地促进局部偏差和长距离依赖之间以及不同层特征之间的交互。非对称解耦策略节省了学习局部归纳偏差和全局信息的计算成本,而跨特征交互可以灵活有效地利用所学特征中的信息。

模型的总体框架如下图所示,分为四个阶段,每个阶段里有若干 CARE block堆叠。在 CARE block里,首先进行特征的 asymmetrical decoupling,即将输入特征从通道维度分为两部分,一部分进行线性注意力计算,另一部分进行卷积运算。然后特征输入到 dual interaction module 处理,细节如下图所示。在第二次 interaction 里,引入了Z,也就是动态记忆单元。

这个工作在前面重点介绍了"Demystify Mamba in Vision: A Linear Attention Perspective"中提出的MILA,说在该工作中 Linear attention 和 卷积 被堆叠。因此,作者想法是将二两进行不对称解耦。我比较好奇用于 linear attention 和 卷积 两部分的特征比例是如何设置的,也许是我看不够仔细,论文里貌似没有介绍。

相关推荐
舒一笑15 分钟前
TorchV企业级AI知识引擎的三大功能支柱:从构建到运营的技术解析
人工智能
掘金酱16 分钟前
🎉 2025年8月金石计划开奖公示
前端·人工智能·后端
鹏多多1 小时前
纯前端人脸识别利器:face-api.js手把手深入解析教学
前端·javascript·人工智能
aneasystone本尊1 小时前
盘点 Chat2Graph 中的专家和工具
人工智能
Baihai_IDP2 小时前
AI Agents 能自己开发工具自己使用吗?一项智能体自迭代能力研究
人工智能·面试·llm
大模型真好玩3 小时前
大模型工程面试经典(七)—如何评估大模型微调效果?
人工智能·面试·deepseek
黎燃11 小时前
短视频平台内容推荐算法优化:从协同过滤到多模态深度学习
人工智能
飞哥数智坊12 小时前
多次尝试用 CodeBuddy 做小程序,最终我放弃了
人工智能·ai编程
后端小肥肠13 小时前
别再眼馋 10w + 治愈漫画!Coze 工作流 3 分钟出成品,小白可学
人工智能·aigc·coze
唐某人丶16 小时前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc