遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)

专题一 深度卷积网络

1.深度学习在遥感图像识别中的范式和问题

2.深度学习的历史发展历程

3.机器学习,深度学习等任务的基本处理流程

4.卷积神经网络的基本原理

5.卷积运算的原理和理解

6.池化操作,全连接层,以及分类器的作用

7.BP反向传播算法的理解

8.CNN模型代码详解

9.特征图,卷积核可视化分析

专题二 PyTorch应用与实践(遥感图像场景分类)

1.PyTorch简介

2.动态计算图,静态计算图等机制

3.PyTorch的使用教程

4.PyTorch的学习案例

5.PyTorch的基本使用与API

6.PyTorch图像分类任务讲解

专题三 卷积神经网络实践与遥感影像目标检测

1.深度学习下的遥感影像目标检测基本知识

2.目标检测数据集的图像和标签表示方式

3.讲解目标检测模型的评估方案,包括正确率,精确率,召回率,mAP等

4.讲解two-stage(二阶)检测模型框架,RCNN, Fast RCNN, Faster RCNN等框架 的演变和差异

5.讲解 one-stage(一阶)检测模型框架,SDD ,Yolo等系列模型

6.现有检测模型「CNN系列」发展小结,包括AlexNet,VGG,googleNet, ResNet,DenseNet等模型

7.从模型演变中讲解实际训练模型的技巧

专题四 卷积神经网络的遥感影像目标检测任务案例 【FasterRCNN】

1.一份完整的Faster-RCNN 模型下实现遥感影像的目标检测

2.讲解数据集的制作过程,包括数据的存储和处理

3.数据集标签的制作

4.模型的搭建,组合和训练

5.检测任数据集在验证过程中的注意事项

专题五 Transformer与遥感影像目标检测

1.从卷积运算到自注意力运算 self-attention

2.pytorch实现的自监督模块

3.从Transformer到Vision Transformer (ViT)

4.Transformer下的新目标检测范式,DETR

5.各类模型在遥感影像下的对比和调研

专题六 Transformer的遥感影像目标检测任务案例 【DETR】

1.一份完整的DETR模型下实现遥感影像的目标检测

2.讲解针对数据的优化策略

3.讲解针对模型的优化策略

4.讲解针对训练过程的优化策略

5.讲解针对检测任务的优化策略

6.提供一些常用的检测,分割数据集的标注工具

相关推荐
光羽隹衡2 小时前
深度学习——卷积神经网络CNN
人工智能·深度学习·cnn
极智视界2 小时前
目标检测数据集 - 手持危险物检测数据集下载
yolo·目标检测·数据集·voc·coco·算法训练·手持危险物
2501_941507944 小时前
【技术实践】基于YOLOv8与ConvNeXtV2的猫狗图像分类与目标检测系统详解
yolo·目标检测·分类
vftOWpVs4 小时前
永磁同步电机基于高阶滑模观测器的无位置传感器速度控制仿真探索
transformer
狗狗学不会4 小时前
Pybind11 封装 RK3588 全流程服务:Python 写逻辑,C++ 跑并发,性能起飞!
c++·人工智能·python·目标检测
Duang007_5 小时前
拆解 Transformer 的灵魂:全景解析 Attention 家族 (Self, Cross, Masked & GQA)
人工智能·深度学习·transformer
xixixi777775 小时前
对 两种不同AI范式——Transformer 和 LSTM 进行解剖和对比
人工智能·深度学习·大模型·lstm·transformer·智能·前沿
给算法爸爸上香6 小时前
yolo26目标检测尝鲜测试
人工智能·yolo·目标检测·计算机视觉·yolo26
t198751287 小时前
红外弱小目标检测MATLAB程序
目标检测·计算机视觉·matlab