遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)

专题一 深度卷积网络

1.深度学习在遥感图像识别中的范式和问题

2.深度学习的历史发展历程

3.机器学习,深度学习等任务的基本处理流程

4.卷积神经网络的基本原理

5.卷积运算的原理和理解

6.池化操作,全连接层,以及分类器的作用

7.BP反向传播算法的理解

8.CNN模型代码详解

9.特征图,卷积核可视化分析

专题二 PyTorch应用与实践(遥感图像场景分类)

1.PyTorch简介

2.动态计算图,静态计算图等机制

3.PyTorch的使用教程

4.PyTorch的学习案例

5.PyTorch的基本使用与API

6.PyTorch图像分类任务讲解

专题三 卷积神经网络实践与遥感影像目标检测

1.深度学习下的遥感影像目标检测基本知识

2.目标检测数据集的图像和标签表示方式

3.讲解目标检测模型的评估方案,包括正确率,精确率,召回率,mAP等

4.讲解two-stage(二阶)检测模型框架,RCNN, Fast RCNN, Faster RCNN等框架 的演变和差异

5.讲解 one-stage(一阶)检测模型框架,SDD ,Yolo等系列模型

6.现有检测模型「CNN系列」发展小结,包括AlexNet,VGG,googleNet, ResNet,DenseNet等模型

7.从模型演变中讲解实际训练模型的技巧

专题四 卷积神经网络的遥感影像目标检测任务案例 【FasterRCNN】

1.一份完整的Faster-RCNN 模型下实现遥感影像的目标检测

2.讲解数据集的制作过程,包括数据的存储和处理

3.数据集标签的制作

4.模型的搭建,组合和训练

5.检测任数据集在验证过程中的注意事项

专题五 Transformer与遥感影像目标检测

1.从卷积运算到自注意力运算 self-attention

2.pytorch实现的自监督模块

3.从Transformer到Vision Transformer (ViT)

4.Transformer下的新目标检测范式,DETR

5.各类模型在遥感影像下的对比和调研

专题六 Transformer的遥感影像目标检测任务案例 【DETR】

1.一份完整的DETR模型下实现遥感影像的目标检测

2.讲解针对数据的优化策略

3.讲解针对模型的优化策略

4.讲解针对训练过程的优化策略

5.讲解针对检测任务的优化策略

6.提供一些常用的检测,分割数据集的标注工具

相关推荐
宇称不守恒4.013 小时前
2025暑期—05神经网络-卷积神经网络
深度学习·神经网络·cnn
lxmyzzs15 小时前
【打怪升级 - 03】YOLO11/YOLO12/YOLOv10/YOLOv8 完全指南:从理论到代码实战,新手入门必看教程
人工智能·神经网络·yolo·目标检测·计算机视觉
Coovally AI模型快速验证15 小时前
数据集分享 | 智慧农业实战数据集精选
人工智能·算法·目标检测·机器学习·计算机视觉·目标跟踪·无人机
ReinaXue16 小时前
大模型【进阶】(五):低秩适配矩阵LORA的深度认识
人工智能·深度学习·神经网络·语言模型·自然语言处理·transformer
Blossom.1181 天前
基于深度学习的图像分类:使用DenseNet实现高效分类
人工智能·深度学习·目标检测·机器学习·分类·数据挖掘·迁移学习
王上上2 天前
【论文阅读51】-CNN-LSTM-安全系数和失效概率预测
论文阅读·cnn·lstm
喵王叭2 天前
【神经网络概述】从感知机到深度神经网络(CNN & RNN)
神经网络·cnn·dnn
老鱼说AI2 天前
Transformer Masked loss原理精讲及其PyTorch逐行实现
人工智能·pytorch·python·深度学习·transformer
lxmyzzs2 天前
【已解决】YOLO11模型转wts时报错:PytorchStreamReader failed reading zip archive
人工智能·python·深度学习·神经网络·目标检测·计算机视觉·bug
Blossom.1182 天前
基于深度学习的图像分类:使用预训练模型进行迁移学习
人工智能·深度学习·目标检测·分类·音视频·语音识别·迁移学习