纯新手教程:用llama.cpp本地部署DeepSeek蒸馏模型

0. 前言

llama.cpp是一个基于纯C/C++实现的高性能大语言模型推理引擎,专为优化本地及云端部署而设计。其核心目标在于通过底层硬件加速和量化技术,实现在多样化硬件平台上的高效推理,同时保持低资源占用与易用性。

最近DeepSeek太火了,就想用llama.cpp在本地部署一下试试效果,当然在个人电脑上部署满血版那是不可能的,选个小点的蒸馏模型玩一玩就好了。

1. 编译llama.cpp

首先从Github上下载llama.cpp的源码:

shell 复制代码
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp

llama.cpp支持多种硬件平台,可根据实际的硬件配置情况选择合适的编译参数进行编译,具体可以参考文档docs/build.md

编译CPU版本

shell 复制代码
cmake -B build
cmake --build build --config Release -j 8

编译GPU版本

编译英伟达GPU版本需要先装好驱动和CUDA,然后执行下面的命令进行编译

shell 复制代码
cmake -B build -DGGML_CUDA=ON -DGGML_CUDA_ENABLE_UNIFIED_MEMORY=1
cmake --build build --config Release -j 8

编译完成后,可执行文件和库文件被存放在build/bin目录下。

2. 模型转换与量化

本文以DeepSeek R1的蒸馏模型DeepSeek-R1-Distill-Qwen-7B为例进行介绍。

2.1 模型下载与转换

首先从魔搭社区下载模型:

shell 复制代码
pip install modelscope
modelscope download --model deepseek-ai/DeepSeek-R1-Distill-Qwen-7B --local_dir DeepSeek-R1-Distill-Qwen-7B

下载好的模型是以HuggingFacesafetensors格式存放的,而llama.cpp使用的是GGUF格式,因此需要先要把模型转换为GGUF格式:

shell 复制代码
# 安装python依赖库
pip install -r requirements.txt
# 转换模型
python convert_hf_to_gguf.py DeepSeek-R1-Distill-Qwen-7B/

转换成功后,在该目录下会生成一个FP16精度、GGUF格式的模型文件DeepSeek-R1-Distill-Qwen-7B-F16.gguf

2.2 模型量化

FP16精度的模型跑起来可能会有点慢,我们可以对模型进行量化以提升推理速度。

llama.cpp主要采用了分块量化(Block-wise Quantization)和K-Quantization算法来实现模型压缩与加速,其核心策略包括以下关键技术:

  1. 分块量化(Block-wise Quantization)

    该方法将权重矩阵划分为固定大小的子块(如3264元素为一组),每个子块独立进行量化。通过为每个子块分配独立的缩放因子(Scale)和零点(Zero Point),有效减少量化误差。例如,Q4_K_M表示每个权重用4比特存储,且子块内采用动态范围调整。

  2. K-Quantization(混合精度量化)

    在子块内部进一步划分更小的单元(称为"超块"),根据数值分布动态选择量化参数。例如,Q4_K_M将超块拆分为多个子单元,每个子单元使用不同位数的缩放因子(如6bit的缩放因子和4bit的量化值),通过混合精度平衡精度与压缩率。

  3. 重要性矩阵(Imatrix)优化

    通过分析模型推理过程中各层激活值的重要性,动态调整量化策略。高重要性区域保留更高精度(如FP16),低重要性区域采用激进量化(如Q2_K),从而在整体模型性能损失可控的前提下实现高效压缩。

  4. 量化类型分级策略

    提供Q2_KQ8_K等多种量化级别,其中字母后缀(如_M_S)表示优化级别:

    • Q4_K_M:中等优化级别,平衡推理速度与精度(常用推荐)。
    • Q5_K_S:轻量化级别,侧重减少内存占用

    典型场景下,Q4_K_M相比FP16模型可减少70%内存占用,推理速度提升2-3倍,同时保持95%以上的原始模型精度。实际部署时需根据硬件资源(如GPU显存容量)和任务需求(如生成文本长度)选择量化策略。

执行下面的命令可将FP16精度的模型采用Q4_K_M的量化策略进行量化:

shell 复制代码
./build/bin/llama-quantize DeepSeek-R1-Distill-Qwen-7B/DeepSeek-R1-Distill-Qwen-7B-F16.gguf DeepSeek-R1-Distill-Qwen-7B/DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf Q4_K_M

量化完成后,模型文件由15.2G减少到4.7G

3. 运行模型

模型量化完后,我们就可以运行模型来试试效果了。llama.cpp提供了多种运行模型的方式:

命令行方式

执行下面的命令就可以在命令行与模型进行对话了:

shell 复制代码
./build/bin/llama-cli -m DeepSeek-R1-Distill-Qwen-7B/DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf -cnv
HTTP Server方式

由于模型是以Markdown格式输出内容,因此用命令行的方式看着不太方便。llama.cpp还提供HTTP Server的方式运行,交互性要好很多。

首先在终端执行命令

shell 复制代码
./build/bin/llama-server -m DeepSeek-R1-Distill-Qwen-7B/DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf --port 8088

然后打开浏览器,输入地址http://127.0.0.1:8088就可以在网页上与模型进行交互了,非常方便!

相关推荐
deephub2 天前
REFRAG技术详解:如何通过压缩让RAG处理速度提升30倍
人工智能·python·大语言模型·rag
编程小白_正在努力中3 天前
大语言模型后训练:解锁潜能的关键路径
人工智能·大语言模型
海的对岸4 天前
前端对接 deepseek 流式实时回答效果
deepseek
MJJ_5 天前
Deep Dive into LLMs like ChatGPT 学习笔记
大语言模型
许泽宇的技术分享5 天前
百刀打造ChatGPT:nanochat极简LLM全栈实现深度解析
chatgpt·transformer·大语言模型·nanochat
丁学文武5 天前
大语言模型(LLM)是“预制菜”? 从应用到底层原理,在到中央厨房的深度解析
人工智能·语言模型·自然语言处理·大语言模型·大模型应用·预制菜
Mr.Lee jack6 天前
体验GPT-OSS-120B:在PH8平台上探索超大规模语言模型的强大能力
人工智能·gpt·语言模型·openai·deepseek
realhuizhu7 天前
分享一个知乎高赞回答生成AI指令:让技术人也能写出有深度的回答
知乎·ai工具·提示词工程·deepseek·内容创作
tongsound7 天前
ollama部署本地模型(deepseek,qwen,gemma3,...)
ollama·deepseek
l1t7 天前
DeepSeek辅助测试三种ODS电子表格写入程序
python·xlsx·ods·deepseek·xlsb