OpenCV(5):图像形态学操作

图像形态学操作是图像处理中的一种重要技术,主要用于处理二值图像(即黑白图像)。OpenCV 中的图像形态学操作是图像处理中的重要工具,通过腐蚀、膨胀、开运算、闭运算和形态学梯度等操作,可以实现对图像的噪声去除、对象分离、边缘检测等效果。掌握这些操作有助于更好地处理和分析图像数据。

以下是 OpenCV 中常用的形态学操作及其函数:

操作 函数 说明 应用场景
腐蚀 cv2.erode() 用结构元素扫描图像,如果结构元素覆盖的区域全是前景,则保留中心像素。 去除噪声、分离物体。
膨胀 cv2.dilate() 用结构元素扫描图像,如果结构元素覆盖的区域存在前景,则保留中心像素。 连接断裂的物体、填充空洞。
开运算 cv2.morphologyEx() 先腐蚀后膨胀。 去除小物体、平滑物体边界。
闭运算 cv2.morphologyEx() 先膨胀后腐蚀。 填充小孔洞、连接邻近物体。
形态学梯度 cv2.morphologyEx() 膨胀图减去腐蚀图。 提取物体边缘。
顶帽运算 cv2.morphologyEx() 原图减去开运算结果。 提取比背景亮的细小物体。
黑帽运算 cv2.morphologyEx() 闭运算结果减去原图。 提取比背景暗的细小物体。

1 腐蚀 (cv2.erode())

腐蚀操作是一种缩小图像中前景对象的过程。腐蚀操作通过将结构元素与图像进行卷积,只有当结构元素完全覆盖图像中的前景像素时,中心像素才会被保留,否则会被腐蚀掉,常用于去除噪声或分离连接的对象。

复制代码
cv2.erode(src, kernel, iterations=1)
  • src: 输入图像,通常是二值图像。
  • kernel: 结构元素,可以自定义或使用 cv2.getStructuringElement() 生成。
  • iterations: 腐蚀操作的次数,默认为1。
python 复制代码
import cv2
import numpy as np

# 读取图像
image = cv2.imread('image.jpg', 0)

# 定义结构元素
kernel = np.ones((5, 5), np.uint8)

# 腐蚀操作
eroded_image = cv2.erode(image, kernel, iterations=1)

# 显示结果
cv2.imshow('Eroded Image', eroded_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

2 膨胀 (cv2.dilate())

膨胀操作与腐蚀相反,它是一种扩大图像中前景对象的过程。膨胀操作通过将结构元素与图像进行卷积,只要结构元素与图像中的前景像素有重叠,中心像素就会被保留。常用于填补前景对象中的空洞或连接断裂的对象。

python 复制代码
cv2.dilate(src, kernel, iterations=1)
  • src: 输入图像,通常是二值图像。
  • kernel: 结构元素,可以自定义或使用 cv2.getStructuringElement() 生成。
  • iterations: 膨胀操作的次数,默认为1。
python 复制代码
import cv2
import numpy as np

# 读取图像
image = cv2.imread('image.jpg', 0)

# 定义结构元素
kernel = np.ones((5, 5), np.uint8)

# 膨胀操作
dilated_image = cv2.dilate(image, kernel, iterations=1)

# 显示结果
cv2.imshow('Dilated Image', dilated_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

3 开运算 (cv2.morphologyEx() with cv2.MORPH_OPEN)

开运算是先腐蚀后膨胀的组合操作。开运算主要用于去除图像中的小噪声或分离连接的对象。

python 复制代码
cv2.morphologyEx(src, op, kernel)
  • src: 输入图像,通常是二值图像。
  • op: 形态学操作类型,开运算使用 cv2.MORPH_OPEN
  • kernel: 结构元素,可以自定义或使用 cv2.getStructuringElement() 生成。
python 复制代码
import cv2
import numpy as np

# 读取图像
image = cv2.imread('image.jpg', 0)

# 定义结构元素
kernel = np.ones((5, 5), np.uint8)

# 开运算
opened_image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)

# 显示结果
cv2.imshow('Opened Image', opened_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

4 闭运算 (cv2.morphologyEx() with cv2.MORPH_CLOSE)

闭运算是先膨胀后腐蚀的组合操作。闭运算主要用于填补前景对象中的小孔或连接断裂的对象。

python 复制代码
cv2.morphologyEx(src, op, kernel)
  • src: 输入图像,通常是二值图像。
  • op: 形态学操作类型,闭运算使用 cv2.MORPH_CLOSE
  • kernel: 结构元素,可以自定义或使用 cv2.getStructuringElement() 生成。
python 复制代码
import cv2
import numpy as np

# 读取图像
image = cv2.imread('image.jpg', 0)

# 定义结构元素
kernel = np.ones((5, 5), np.uint8)

# 闭运算
closed_image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)

# 显示结果
cv2.imshow('Closed Image', closed_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

5 形态学梯度 (cv2.morphologyEx() with cv2.MORPH_GRADIENT)

形态学梯度是膨胀图像与腐蚀图像的差值,主要用于提取图像中前景对象的边缘。

python 复制代码
cv2.morphologyEx(src, op, kernel)
  • src: 输入图像,通常是二值图像。
  • op: 形态学操作类型,形态学梯度使用 cv2.MORPH_GRADIENT
  • kernel: 结构元素,可以自定义或使用 cv2.getStructuringElement() 生成。
python 复制代码
import cv2
import numpy as np

# 读取图像
image = cv2.imread('image.jpg', 0)

# 定义结构元素
kernel = np.ones((5, 5), np.uint8)

# 形态学梯度
gradient_image = cv2.morphologyEx(image, cv2.MORPH_GRADIENT, kernel)

# 显示结果
cv2.imshow('Gradient Image', gradient_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
元智启1 分钟前
企业AI应用进入“深水区”:技术革命重构产业逻辑的三大范式跃迁
人工智能·重构
sld1682 分钟前
2026 B2B电商存量时代破局:商联达以数据与生态重构增长逻辑
大数据·人工智能
Lian_Ge_Blog2 分钟前
知识蒸馏学习总结
人工智能·深度学习
说私域2 分钟前
留量为王,服务制胜:开源链动2+1模式、AI智能名片与S2B2C商城小程序的协同创新路径
人工智能·小程序·开源
2401_841495644 分钟前
【机器学习】人工神经网络(ANN)
人工智能·python·深度学习·神经网络·机器学习·特征学习·非线性映射
qyresearch_4 分钟前
赤足跑鞋市场:自然运动浪潮下的技术博弈与全球化重构
人工智能·重构
甄心爱学习7 分钟前
机器人算法与设计-复习
人工智能·机器人
是一个Bug7 分钟前
人工智能基础、核心模型、工程实践及前沿应用开发面试题清单(30道)
人工智能
薛不痒8 分钟前
深度学习之神经网络的构建和实现
人工智能·深度学习·神经网络
sali-tec9 分钟前
C# 基于OpenCv的视觉工作流-章7-膨胀
图像处理·人工智能·opencv·算法·计算机视觉