stm32单片机个人学习笔记16(SPI通信协议)

前言

本篇文章属于stm32单片机(以下简称单片机)的学习笔记,来源于B站教学视频。下面是这位up主的视频链接。本文为个人学习笔记,只能做参考,细节方面建议观看视频,肯定受益匪浅。

STM32入门教程-2023版 细致讲解 中文字幕_哔哩哔哩_bilibili

一、SPI通信

1.硬件电路规定

2.移位示意图

3.软件时序规定

4.实际通信时序

区别于I2C是对寄存器进行操作,SPI通信的从机会定义一个指令集,起始条件后,主机给从机发一个指令完成相应任务即可

第一个字节为写指令0x02,第二三四个字节为地址,地址高位先行,第五个字节是写入的数据

第一个字节为写指令0x02,第二三四个字节为地址,第五个字节进行交换字节,主机发送一个0xFF或0x00把从机发送的数据交换回来

二、W25Q64

1.简介

2.硬件电路

3.W25Q64框图

把8MB的内存分为128个块(Block),每个块又分为16个扇(Sector),每个扇又分16页(Page) ,每页256B

4.Flash操作注意事项

5.具体细节详见W25Q64的参考手册

三、软件SPI读写W25Q64

1.MySPI.c

复制代码
#include "stm32f10x.h"                  // Device header

void MySPI_W_SS(uint8_t BitValue)
{
	GPIO_WriteBit(GPIOA, GPIO_Pin_4, (BitAction)BitValue);
}

void MySPI_W_SCK(uint8_t BitValue)
{
	GPIO_WriteBit(GPIOA, GPIO_Pin_5, (BitAction)BitValue);
}

void MySPI_W_MOSI(uint8_t BitValue)
{
	GPIO_WriteBit(GPIOA, GPIO_Pin_7, (BitAction)BitValue);
}

uint8_t MySPI_R_MISO(void)
{
	return GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_6);
}

void MySPI_Init(void)
{
	
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
	
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_7;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);

	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	MySPI_W_SS(1);
	MySPI_W_SCK(0);
}

void MySPI_Start(void)
{
	MySPI_W_SS(0);
}

void MySPI_Stop(void)
{
	MySPI_W_SS(1);
}

uint8_t MySPI_SwapByte(uint8_t ByteSend)
{
	uint8_t i, ByteReceive = 0x00;
	for (i = 0; i < 8;i++)
	{
		MySPI_W_MOSI(ByteSend & (0x80 >> i));
		MySPI_W_SCK(1);
		if (MySPI_R_MISO() == 1) {ByteReceive |= (0x80 >> i);}
		MySPI_W_SCK(0);
	}
	
	return ByteReceive;
}

其中交换字节函数还可写为

复制代码
uint8_t MySPI_SwapByte(uint8_t ByteSend)
{
	uint8_t i;
	for (i = 0; i < 8;i++)
	{
		MySPI_W_MOSI(ByteSend & 0x80);
		ByteSend <<= 1;
		MySPI_W_SCK(1);
		if (MySPI_R_MISO() == 1) {ByteSend |= 0x01;}
		MySPI_W_SCK(0);
	}
	
	return ByteSend;
}

这样效率更高,但会改变ByteSend的值

2.W25Q64.c

复制代码
#include "stm32f10x.h"                  // Device header
#include "MySPI.h"
#include "W25Q64_Ins.h"

void W25Q64_Init(void)
{
	MySPI_Init();
}

void W25Q64_ReadID(uint8_t *MID, uint16_t *DID)
{
	MySPI_Start();
	MySPI_SwapByte(W25Q64_JEDEC_ID);
	*MID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);
	*DID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);
	*DID <<= 8;
	*DID |= MySPI_SwapByte(W25Q64_DUMMY_BYTE);
	MySPI_Stop();
}

void W25Q64_WriteEnable(void)
{
	MySPI_Start();
	MySPI_SwapByte(W25Q64_WRITE_ENABLE);
	MySPI_Stop();
}

void W25Q64_WaitBusy(void)
{
	uint32_t TimeOut = 100000;
	MySPI_Start();
	MySPI_SwapByte(W25Q64_READ_STATUS_REGISTER_1);
	while((MySPI_SwapByte(W25Q64_DUMMY_BYTE) & 0x01) == 0x01)
	{
		TimeOut--;
		if (TimeOut == 0)
		{
			break;
		}
	}
	MySPI_Stop();
}

void W25Q64_PageProgram(uint32_t Address, uint8_t *DataArray, uint16_t Count)
{
	uint16_t i;
	W25Q64_WriteEnable();
	MySPI_Start();
	MySPI_SwapByte(W25Q64_PAGE_PROGRAM);
	MySPI_SwapByte(Address >> 16);
	MySPI_SwapByte(Address >> 8);
	MySPI_SwapByte(Address);
	for (i = 0;i < Count;i++)
	{
		MySPI_SwapByte(DataArray[i]);
	}
	MySPI_Stop();	
	W25Q64_WaitBusy();
}

void W25Q64_SectorErase(uint32_t Address)
{
	W25Q64_WriteEnable();
	MySPI_Start();
	MySPI_SwapByte(W25Q64_SECTOR_ERASE_4KB);
	MySPI_SwapByte(Address >> 16);
	MySPI_SwapByte(Address >> 8);
	MySPI_SwapByte(Address);
	MySPI_Stop();	
	W25Q64_WaitBusy();
}

void W25Q64_ReadData(uint32_t Address, uint8_t *DataArray, uint32_t Count)
{
	uint32_t i;
	MySPI_Start();
	MySPI_SwapByte(W25Q64_READ_DATA);
	MySPI_SwapByte(Address >> 16);
	MySPI_SwapByte(Address >> 8);
	MySPI_SwapByte(Address);
	for (i = 0;i < Count;i++)
	{
		DataArray[i] = MySPI_SwapByte(W25Q64_DUMMY_BYTE);
	}
	MySPI_Stop();	
}

3.main.c

复制代码
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "W25Q64.h"

uint8_t MID;
uint16_t DID;

uint8_t ArrayWrite[] = {0xB1, 0xB2, 0xB3, 0xB4};
uint8_t ArrayRead[4];

int main(void)
{

	OLED_Init();
	W25Q64_Init();
	
	OLED_ShowString(1, 1, "MID:   DID:");
	OLED_ShowString(2, 1, "W:");
	OLED_ShowString(3, 1, "R:");
	
	W25Q64_ReadID(&MID, &DID);
	OLED_ShowHexNum(1, 5, MID, 2);
	OLED_ShowHexNum(1, 12, DID, 4);
	
	W25Q64_SectorErase(0x000000);
	W25Q64_PageProgram(0x000000, ArrayWrite, 4);
	
	W25Q64_ReadData(0x000000, ArrayRead, 4);
	
	OLED_ShowHexNum(2, 3, ArrayWrite[0], 2);
	OLED_ShowHexNum(2, 6, ArrayWrite[1], 2);
	OLED_ShowHexNum(2, 9, ArrayWrite[2], 2);
	OLED_ShowHexNum(2, 12, ArrayWrite[3], 2);
	
	OLED_ShowHexNum(3, 3, ArrayRead[0], 2);
	OLED_ShowHexNum(3, 6, ArrayRead[1], 2);
	OLED_ShowHexNum(3, 9, ArrayRead[2], 2);
	OLED_ShowHexNum(3, 12, ArrayRead[3], 2);
	
	while (1)
	{

	}
}

四、硬件SPI读写W25Q64

1.SPI通信外设

2.SPI框图

3.SPI基本结构

4.主模式全双工连续传输(较为复杂,性能好)

5.非连续传输(较为简单,性能差一点)

6.代码部分

只需更改MySPI.c部分的内容即可

配置好硬件SPI

复制代码
#include "stm32f10x.h"                  // Device header

void MySPI_W_SS(uint8_t BitValue)
{
	GPIO_WriteBit(GPIOA, GPIO_Pin_4, (BitAction)BitValue);
}

void MySPI_Init(void)
{
	
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);
	
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_7;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	SPI_InitTypeDef SPI_InitStructure;
	SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
	SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
	SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
	SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
	SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_128;
	SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
	SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;
	SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
	SPI_InitStructure.SPI_CRCPolynomial = 7;
	SPI_Init(SPI1, &SPI_InitStructure);
	
	SPI_Cmd(SPI1, ENABLE);
	
	MySPI_W_SS(1);
}

void MySPI_Start(void)
{
	MySPI_W_SS(0);
}

void MySPI_Stop(void)
{
	MySPI_W_SS(1);
}

uint8_t MySPI_SwapByte(uint8_t ByteSend)
{
	while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) != SET);
	
	SPI_I2S_SendData(SPI1, ByteSend);
	
	while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) != SET);

	return SPI_I2S_ReceiveData(SPI1);
}
相关推荐
JJJJ_iii3 小时前
【机器学习01】监督学习、无监督学习、线性回归、代价函数
人工智能·笔记·python·学习·机器学习·jupyter·线性回归
Han.miracle4 小时前
数据结构——二叉树的从前序与中序遍历序列构造二叉树
java·数据结构·学习·算法·leetcode
知识分享小能手5 小时前
uni-app 入门学习教程,从入门到精通,uni-app基础扩展 —— 详细知识点与案例(3)
vue.js·学习·ui·微信小程序·小程序·uni-app·编程
●VON6 小时前
重生之我在大学自学鸿蒙开发第九天-《分布式流转》
学习·华为·云原生·harmonyos·鸿蒙
无妄无望6 小时前
docker学习(4)容器的生命周期与资源控制
java·学习·docker
朱嘉鼎8 小时前
状态机的介绍
c语言·单片机
清风6666669 小时前
基于单片机的噪声波形检测与分贝测量仪设计
单片机·嵌入式硬件·毕业设计·课程设计
Larry_Yanan9 小时前
QML学习笔记(四十二)QML的MessageDialog
c++·笔记·qt·学习·ui
能不能别报错9 小时前
K8s学习笔记(十九) K8s资源限制
笔记·学习·kubernetes
易享电子9 小时前
基于单片机车窗环境监测控制系统Proteus仿真(含全部资料)
单片机·嵌入式硬件·fpga开发·51单片机·proteus