【ORB-SLAM3】鲁棒核函数的阈值设置

问题背景

阈值 δ \delta δ 是 Huber 鲁棒核函数的重要参数。首先给出结论,在ORB-SLAM系列中,该阈值选取的原则为:

  • 单目情况下,根据95%置信水平下两自由度卡方检验 的临界值, δ \delta δ 设置为 5.991 \sqrt{5.991} 5.991 ;
  • 双目情况下,根据95%置信水平下三自由度卡方检验 的临界值, δ \delta δ 设置为 7.815 \sqrt{7.815} 7.815 ;

下面详细描述了以这种方式设置Huber损失函数的原因。

Huber鲁棒核函数

使用的Huber鲁棒核函数定义如下:


当误差 e e e 超过阈值 δ \delta δ 时,函数的增长从二次型变为线性型。在构建视觉重投影误差的背景下,我们假设当重投影误差超过某个阈值时,有95%的置信度认为是由于错误匹配导致的离群点,从而以线性的方式添加到代价函数中;否则,以二次函数方式计算误差。通过这样的方式,限制了错误匹配对优化算法的影响。

单目相机分析

接下来,我们首先分析单目相机配置中的重投影误差。令 u ∈ R 2 \mathbf{u} \in \mathbb{R}^2 u∈R2 表示图像特征点的二维(2D)像素位置,并令 u ‾ ∈ R 2 \overline{\mathbf{u}} \in \mathbb{R}^2 u∈R2 表示从三维点 P ∈ R 3 \bm{P} \in \mathbb{R}^3 P∈R3 重投影到图像上的2D像素位置,则重投影误差 e v \bm{e}_v ev 为:


其中 ( f x , f y ) (f_x, f_y) (fx,fy) 是相机焦距, ( c x , c y ) (c_x, c_y) (cx,cy)是主点,均从标定过程已知。 Π m ( ⋅ ) \Pi_m(\cdot) Πm(⋅) 是单目相机投影模型。我们假设重投影误差遵循高斯分布:

然后利用协方差对重投影误差进行归一化,得到:

这意味着它遵循二维标准正态分布,因此由其各分量的平方和相加得到的统计量服从自由度为2的卡方分布

双目相机分析

对于双目配置的情况,我们令观测量为 3 维 ,即由左相机图像的特征点横纵坐标 + 右相机特征点的横坐标组成 (在双目立体相机配置下,左右图像特征点的纵坐标就是相同的)。令 u z ∈ R 3 \mathbf{u}_z \in \mathbb{R}^3 uz∈R3 为双目立体相机的特征点观测量, u ‾ z ∈ R 3 \overline{\mathbf{u}}_z \in \mathbb{R}^3 uz∈R3 表示从三维地图点 P ∈ R 3 \bm{P} \in \mathbb{R}^3 P∈R3 重投影到图像上的像素位置,则重投影误差 e v \bm{e}_v ev 为:

其中 Π s ( ⋅ ) \Pi_s(\cdot) Πs(⋅) 为双目相机投影模型。 ( f x , f y ) (f_x, f_y) (fx,fy) 是相机焦距, ( c x , c y ) (c_x, c_y) (cx,cy)是主点, b b b 是基线长度,均从内参标定中已知。与单目配置情况类似,利用协方差对双目重投影误差进行归一化,其服从三维标准正态分布,因此由其各分量的平方和相加得到的统计量服从自由度为3的卡方分布

相关推荐
Haohao+++6 小时前
Stable Diffusion原理解析
人工智能·深度学习·算法
ideaout技术团队9 小时前
leetcode学习笔记2:多数元素(摩尔投票算法)
学习·算法·leetcode
代码充电宝9 小时前
LeetCode 算法题【简单】283. 移动零
java·算法·leetcode·职场和发展
不枯石12 小时前
Matlab通过GUI实现点云的均值滤波(附最简版)
开发语言·图像处理·算法·计算机视觉·matlab·均值算法
不枯石12 小时前
Matlab通过GUI实现点云的双边(Bilateral)滤波(附最简版)
开发语言·图像处理·算法·计算机视觉·matlab
白水先森14 小时前
C语言作用域与数组详解
java·数据结构·算法
想唱rap14 小时前
直接选择排序、堆排序、冒泡排序
c语言·数据结构·笔记·算法·新浪微博
老葱头蒸鸡15 小时前
(27)APS.NET Core8.0 堆栈原理通俗理解
算法
视睿15 小时前
【C++练习】06.输出100以内的所有素数
开发语言·c++·算法·机器人·无人机
柠檬071116 小时前
matlab cell 数据转换及记录
算法