【ORB-SLAM3】鲁棒核函数的阈值设置

问题背景

阈值 δ \delta δ 是 Huber 鲁棒核函数的重要参数。首先给出结论,在ORB-SLAM系列中,该阈值选取的原则为:

  • 单目情况下,根据95%置信水平下两自由度卡方检验 的临界值, δ \delta δ 设置为 5.991 \sqrt{5.991} 5.991 ;
  • 双目情况下,根据95%置信水平下三自由度卡方检验 的临界值, δ \delta δ 设置为 7.815 \sqrt{7.815} 7.815 ;

下面详细描述了以这种方式设置Huber损失函数的原因。

Huber鲁棒核函数

使用的Huber鲁棒核函数定义如下:


当误差 e e e 超过阈值 δ \delta δ 时,函数的增长从二次型变为线性型。在构建视觉重投影误差的背景下,我们假设当重投影误差超过某个阈值时,有95%的置信度认为是由于错误匹配导致的离群点,从而以线性的方式添加到代价函数中;否则,以二次函数方式计算误差。通过这样的方式,限制了错误匹配对优化算法的影响。

单目相机分析

接下来,我们首先分析单目相机配置中的重投影误差。令 u ∈ R 2 \mathbf{u} \in \mathbb{R}^2 u∈R2 表示图像特征点的二维(2D)像素位置,并令 u ‾ ∈ R 2 \overline{\mathbf{u}} \in \mathbb{R}^2 u∈R2 表示从三维点 P ∈ R 3 \bm{P} \in \mathbb{R}^3 P∈R3 重投影到图像上的2D像素位置,则重投影误差 e v \bm{e}_v ev 为:


其中 ( f x , f y ) (f_x, f_y) (fx,fy) 是相机焦距, ( c x , c y ) (c_x, c_y) (cx,cy)是主点,均从标定过程已知。 Π m ( ⋅ ) \Pi_m(\cdot) Πm(⋅) 是单目相机投影模型。我们假设重投影误差遵循高斯分布:

然后利用协方差对重投影误差进行归一化,得到:

这意味着它遵循二维标准正态分布,因此由其各分量的平方和相加得到的统计量服从自由度为2的卡方分布

双目相机分析

对于双目配置的情况,我们令观测量为 3 维 ,即由左相机图像的特征点横纵坐标 + 右相机特征点的横坐标组成 (在双目立体相机配置下,左右图像特征点的纵坐标就是相同的)。令 u z ∈ R 3 \mathbf{u}_z \in \mathbb{R}^3 uz∈R3 为双目立体相机的特征点观测量, u ‾ z ∈ R 3 \overline{\mathbf{u}}_z \in \mathbb{R}^3 uz∈R3 表示从三维地图点 P ∈ R 3 \bm{P} \in \mathbb{R}^3 P∈R3 重投影到图像上的像素位置,则重投影误差 e v \bm{e}_v ev 为:

其中 Π s ( ⋅ ) \Pi_s(\cdot) Πs(⋅) 为双目相机投影模型。 ( f x , f y ) (f_x, f_y) (fx,fy) 是相机焦距, ( c x , c y ) (c_x, c_y) (cx,cy)是主点, b b b 是基线长度,均从内参标定中已知。与单目配置情况类似,利用协方差对双目重投影误差进行归一化,其服从三维标准正态分布,因此由其各分量的平方和相加得到的统计量服从自由度为3的卡方分布

相关推荐
罗迪尼亚的熔岩1 小时前
kuka, fanuc, abb机器人和移动相机的标定
机器人·工业相机·海康威视·标定·visonmaster
zhz52143 小时前
开源数字人框架 AWESOME-DIGITAL-HUMAN 技术解析与应用指南
人工智能·ai·机器人·开源·ai编程·ai数字人·智能体
codists4 小时前
《算法导论(第4版)》阅读笔记:p14-p16
算法
zilpher_wang4 小时前
K-means
算法·机器学习·kmeans
柃歌4 小时前
【LeetCode Solutions】LeetCode 176 ~ 180 题解
数据结构·数据库·sql·算法·leetcode
袁气满满~_~4 小时前
LeetCode:101、对称二叉树
算法·leetcode·职场和发展
jndingxin4 小时前
OpenCV 图形API(77)图像与通道拼接函数-----对图像进行几何变换函数remap()
人工智能·opencv·计算机视觉
How_doyou_do4 小时前
Dijkstra
算法
赵和范5 小时前
C++:书架
开发语言·c++·算法
cnbestec5 小时前
Uskin阵列式三轴力触觉传感器:驱动机器人智能的触觉数据专家
机器人