排序算法归类整理对比

以下是常见排序算法的详细分类和解析,涵盖原理、时间复杂度及适用场景:


一、比较排序算法

1. 快速排序(Quick Sort)
  • 原理:分治策略,选取基准元素(pivot),将数组分为小于基准和大于基准的两部分,递归排序。

  • 时间复杂度

    • 平均:(O(n \log n))
    • 最坏(已排序数组):(O(n^2))
  • 空间复杂度:(O(\log n))(递归栈)

  • 稳定性:不稳定

  • 代码示例

    python 复制代码
    def quick_sort(arr):
        if len(arr) <= 1:
            return arr
        pivot = arr[len(arr) // 2]
        left = [x for x in arr if x < pivot]
        middle = [x for x in arr if x == pivot]
        right = [x for x in arr if x > pivot]
        return quick_sort(left) + middle + quick_sort(right)
2. 归并排序(Merge Sort)
  • 原理:分治法,将数组递归拆分到最小单元,再合并有序子数组。
  • 时间复杂度:始终 (O(n \log n))
  • 空间复杂度:(O(n))(合并时需要临时数组)
  • 稳定性:稳定
  • 适用场景:大数据量、链表排序、外部排序(如磁盘文件排序)。
3. 堆排序(Heap Sort)
  • 原理:构建最大堆,将堆顶元素(最大值)与末尾元素交换,调整堆结构。
  • 时间复杂度:(O(n \log n))
  • 空间复杂度:(O(1))(原地排序)
  • 稳定性:不稳定
  • 优势:适合实时数据流(无需全部数据即可开始排序)。

二、简单排序算法

1. 插入排序(Insertion Sort)
  • 原理:逐个将元素插入已排序序列的合适位置。
  • 时间复杂度
    • 平均:(O(n^2))
    • 最优(已排序数组):(O(n))
  • 空间复杂度:(O(1))
  • 稳定性:稳定
  • 适用场景:小规模数据或基本有序数据。
2. 选择排序(Selection Sort)
  • 原理:每轮找到最小元素,与当前位置交换。
  • 时间复杂度:始终 (O(n^2))
  • 空间复杂度:(O(1))
  • 稳定性:不稳定(交换可能破坏顺序)。
3. 冒泡排序(Bubble Sort)
  • 原理:相邻元素比较交换,逐步将最大值"冒泡"到末尾。
  • 时间复杂度
    • 平均:(O(n^2))
    • 最优(已排序数组):(O(n))
  • 空间复杂度:(O(1))
  • 稳定性:稳定

三、非比较排序算法

1. 计数排序(Counting Sort)
  • 原理:统计元素出现次数,按计数重建有序数组。
  • 时间复杂度:(O(n + k))((k) 为数据范围)
  • 空间复杂度:(O(k))
  • 适用场景:整数排序,且数据范围 (k) 较小。
2. 桶排序(Bucket Sort)
  • 原理:将数据分到有限数量的桶中,每个桶单独排序后合并。
  • 时间复杂度
    • 平均:(O(n + k))((k) 为桶数量)
    • 最坏:(O(n^2))
  • 适用场景:数据均匀分布的场景。
3. 基数排序(Radix Sort)
  • 原理:按位数从低位到高位依次进行稳定排序(如计数排序)。
  • 时间复杂度:(O(d(n + k)))((d) 为最大位数,(k) 为基数范围)
  • 适用场景:整数或字符串排序。

四、算法对比与选择

算法 平均时间复杂度 空间复杂度 稳定性 适用场景
快速排序 (O(n \log n)) (O(\log n)) 不稳定 通用排序,大数据量
归并排序 (O(n \log n)) (O(n)) 稳定 外部排序、稳定性要求高
堆排序 (O(n \log n)) (O(1)) 不稳定 原地排序、实时数据流
插入排序 (O(n^2)) (O(1)) 稳定 小规模或基本有序数据
计数排序 (O(n + k)) (O(k)) 稳定 整数且范围小
基数排序 (O(d(n + k))) (O(n + k)) 稳定 多位数整数或定长字符串

相关推荐
闻缺陷则喜何志丹几秒前
【状态机动态规划】3686. 稳定子序列的数量|1969
c++·算法·动态规划·力扣·状态机动态规划
寻星探路11 分钟前
【算法通关】双指针技巧深度解析:从基础到巅峰(Java 最优解)
java·开发语言·人工智能·python·算法·ai·指针
余瑜鱼鱼鱼12 分钟前
Java数据结构:从入门到精通(十)
数据结构
wen__xvn12 分钟前
力扣第 484 场周赛
算法·leetcode·职场和发展
好奇龙猫17 分钟前
【大学院-筆記試験練習:线性代数和数据结构(5)】
数据结构·线性代数
YuTaoShao24 分钟前
【LeetCode 每日一题】865. 具有所有最深节点的最小子树——(解法一)自顶向下
算法·leetcode·职场和发展
爱吃生蚝的于勒25 分钟前
【Linux】进程间通信之匿名管道
linux·运维·服务器·c语言·数据结构·c++·vim
寻星探路38 分钟前
【算法专题】哈希表:从“两数之和”到“最长连续序列”的深度解析
java·数据结构·人工智能·python·算法·ai·散列表
!停1 小时前
C语言单链表
c语言·数据结构·算法
闻缺陷则喜何志丹1 小时前
【回文 字符串】3677 统计二进制回文数字的数目|2223
c++·算法·字符串·力扣·回文