【算法系列】归并排序详解

文章目录

  • 归并排序详解
    • [1. 基本原理](#1. 基本原理)
      • [1.1 分治法策略](#1.1 分治法策略)
      • [1.2 归并排序步骤](#1.2 归并排序步骤)
      • [1.3 图解示例](#1.3 图解示例)
    • [2. 时间复杂度与空间复杂度](#2. 时间复杂度与空间复杂度)
      • [2.1 时间复杂度](#2.1 时间复杂度)
      • [2.2 空间复杂度](#2.2 空间复杂度)
    • [3. 稳定性](#3. 稳定性)
    • [4. Java 实现示例](#4. Java 实现示例)
    • [5. 归并排序的优点与缺点](#5. 归并排序的优点与缺点)
      • [5.1 优点](#5.1 优点)
      • [5.2 缺点](#5.2 缺点)
    • [6. 总结](#6. 总结)

归并排序详解

归并排序(Merge Sort)是一种基于分治法的经典排序算法。它通过递归地将数组分成较小的子数组,分别对这些子数组进行排序,然后将它们合并以产生最终的有序数组。归并排序以其稳定性和在最坏情况下的高效性能而著称。

1. 基本原理

1.1 分治法策略

归并排序的核心思想是分治法,即将一个问题分解成若干个规模更小但类似的子问题,递归地解决这些子问题,然后将结果合并以得到原问题的解。

1.2 归并排序步骤

  1. 分割:将数组不断分割成两个大致相等的部分,直到每个部分只有一个元素。
  2. 排序:对每个单独的元素视为已排序的部分。
  3. 合并:将两个已排序的子数组合并成一个更大的已排序数组,直到整个数组排序完成。

1.3 图解示例

假设我们有一个数组 [8, 4, 5, 7, 1, 3, 6, 2],以下是归并排序的过程:

2. 时间复杂度与空间复杂度

2.1 时间复杂度

  • 最好、平均和最坏情况:O(n log n)
  • 每次分割操作的时间复杂度为 O(log n),每次合并操作的时间复杂度为 O(n)。

2.2 空间复杂度

  • 空间复杂度:O(n)
  • 需要额外的空间来存储临时数组,在合并过程中使用。

3. 稳定性

归并排序是稳定的排序算法,即相同值的相对位置不会改变。

4. Java 实现示例

java 复制代码
public static void mergeSort(int[] arr) {
    int[] temp = new int[arr.length];
    mergeSort(arr, 0, arr.length - 1, temp);
}

private static void mergeSort(int[] arr, int l, int r, int[] temp) {
    if(l < r) {
        int m = (l + r) / 2;
        mergeSort(arr, l, m, temp);
        mergeSort(arr, m + 1, r, temp);
        merge(arr, l, m, r, temp);
    }
}

private static void merge(int[] arr, int l, int m, int r, int[] temp) {
    int i = l; // 左序列指针
    int j = m + 1; // 右序列指针
    int k = l;
    while(i <= m && j <= r) {
        if(arr[i] <= arr[j]) {
            temp[k++] = arr[i++];
        } else {
            temp[k++] = arr[j++];
        }
    }

    // 左序列剩余元素填充至临时数组
    while(i <= m) {
        temp[k++] = arr[i++];
    }

    // 右序列剩余元素填充至临时数组
    while(j <= r) {
        temp[k++] = arr[j++];
    }

    // 将临时数组的数据拷贝至原数组
    k = l;
    while(k <= r) {
        arr[k] = temp[k++];
    }
}

5. 归并排序的优点与缺点

5.1 优点

稳定性:归并排序是稳定的排序算法,适合对稳定性有要求的应用场景。

时间复杂度:无论数据是否有序,归并排序的时间复杂度始终为 O(n log n),这使得它在处理大规模数据时表现良好。

适用范围广:适用于各种类型的数据集,尤其是当数据量较大且需要稳定排序时。

5.2 缺点

空间复杂度较高:归并排序需要额外的 O(n) 空间来存储临时数组,这在内存有限的情况下可能是一个限制。

递归调用栈深度:递归调用栈的深度为 O(log n),在极端情况下可能导致栈溢出。

6. 总结

归并排序是一种非常高效的排序算法,特别适合处理大规模数据集。尽管它的空间复杂度较高,但由于其稳定性和一致的时间复杂度,使其成为许多实际应用中的首选排序算法之一。

相关推荐
寻星探路1 小时前
【深度长文】万字攻克网络原理:从 HTTP 报文解构到 HTTPS 终极加密逻辑
java·开发语言·网络·python·http·ai·https
你撅嘴真丑4 小时前
第九章-数字三角形
算法
曹牧4 小时前
Spring Boot:如何测试Java Controller中的POST请求?
java·开发语言
uesowys4 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
ValhallaCoder4 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
董董灿是个攻城狮4 小时前
AI 视觉连载1:像素
算法
爬山算法5 小时前
Hibernate(90)如何在故障注入测试中使用Hibernate?
java·后端·hibernate
智驱力人工智能5 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
kfyty7255 小时前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai
猫头虎5 小时前
如何排查并解决项目启动时报错Error encountered while processing: java.io.IOException: closed 的问题
java·开发语言·jvm·spring boot·python·开源·maven