【Day48 LeetCode】图论问题 Ⅵ

一、图论问题 Ⅵ

1、拓扑排序--软件构建

拓扑排序是将一个有向图转成线性的排序,需要判断有向图中是否存在环。这个比较经典的问题就是leetcode里207 课程表。和这题异曲同工。

思路就是:记录每个节点的入度,以及当前节点的下一个节点。优先选出入度为0的节点,因为入度为0表示不需要前置依赖(或者前置依赖已满足)。入度为0的节点进入队列,再出队列,消除对下一个节点的影响,也就是将下一个节点的入度减1,若产生新的入度为0的节点,则加入队列。

CPP 复制代码
# include<iostream>
# include<vector>
# include<queue>

using namespace std;

int main(){
    int n, m; // n个文件  m条依赖关系
    cin >> n >> m;
    vector<int> indegree(n);
    vector<vector<int>> neighbor(n);
    
    int s, t;
    for(int i=0; i<m; ++i){
        cin >> s >> t;
        indegree[t]++;
        neighbor[s].push_back(t);
    }
    
    // 入度为0的进队列
    queue<int> q;
    for(int i=0; i<n; ++i){
        if(indegree[i]==0)
            q.push(i);
    }
    vector<int> ans;
    while(!q.empty()){
        int pre = q.front(); q.pop();
        ans.push_back(pre);
        for(auto cur : neighbor[pre]){
            indegree[cur]--;
            if(indegree[cur]==0)
                q.push(cur);
        }
    }
    if(ans.size()==n){
        for(int i=0; i<n-1; ++i)
            cout << ans[i] << " ";
        cout << ans[n-1] << endl;
    }else{
        cout << -1 << endl;
    }
    
    return 0;
}

2、dijkstra算法

dijkstra算法是经典的最短路算法,其算法主要流程是 1、选取源点到未被访问过且距离最近的节点; 2、将最近节点标记为访问过 3、更新非访问节点到源点的距离。可以发现,dijkstra算法与prim算法在算法流程上非常像。

在代码实现上,我们需要使用一个数组来记录每一个节点距离源点的最近距离。

CPP 复制代码
# include<iostream>
# include<vector>
# include<climits>

using namespace std;

int main(){
    int n, m;
    cin >> n >> m;
    int s, e, v;
    vector<vector<int>> grid(n+1, vector<int>(n+1, INT_MAX));
    for(int i=0; i<m; ++i){
        cin >> s >> e >> v;
        grid[s][e] = v;
    }
    vector<int> minDist(n+1, INT_MAX);
    vector<bool> visited(n+1, false);
    int start = 1, end = n;
    minDist[start] = 0;
    for(int i=1; i<=n; ++i){
        int cur = 1, minVal = INT_MAX;
        // 1、选取源点到未被访问过且距离最近的节点; 
        for(int v=1; v<=n; ++v){
            if(!visited[v] && minDist[v] < minVal){
                minVal = minDist[v];
                cur = v;
            }
        }
        // 2、将最近节点标记为访问过 
        visited[cur] = true;
        // 3、更新非访问节点到源点的距离
        for(int v=1; v<=n; ++v){
            if(!visited[v] && grid[cur][v] < INT_MAX && grid[cur][v] + minDist[cur] < minDist[v])
                minDist[v] = grid[cur][v] + minDist[cur];
        }
    }
    if(minDist[end] < INT_MAX)
        cout << minDist[end] << endl;
    else
        cout << -1 << endl;

    return 0;
}
相关推荐
三年呀7 分钟前
共识算法的深度探索:从原理到实践的全面指南
算法·区块链·共识算法·分布式系统·区块链技术·高性能优化
alex10015 分钟前
BeaverTails数据集:大模型安全对齐的关键资源与实战应用
人工智能·算法·安全
麦格芬23019 分钟前
LeetCode 416 分割等和子集
数据结构·算法
2401_841495641 小时前
【自然语言处理】Universal Transformer(UT)模型
人工智能·python·深度学习·算法·自然语言处理·transformer·ut
浅川.251 小时前
xtuoj 整数分类
算法
小灰灰的FPGA4 小时前
9.9元奶茶项目:matlab+FPGA的cordic算法(向量模式)计算相位角
算法·matlab·fpga开发
2401_841495644 小时前
【数据结构】顺序表的基本操作
数据结构·c++·算法·顺序表·线性表·线性结构·顺序表的基本操作
自信的小螺丝钉5 小时前
Leetcode 138. 随机链表的复制 哈希 / 拼接+拆分
leetcode·链表·哈希算法
元亓亓亓5 小时前
LeetCode热题--207. 课程表--中等
算法·leetcode·职场和发展
坚持编程的菜鸟5 小时前
LeetCode每日一题——有效的字母异位词
c语言·算法·leetcode